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Abstract

Anderson localization, a phenomenon describing “localization” in the

lower band of the eigenspectrum of a Hamiltonian was largely observation-

ally confirmed throughout the 20th century. It was not until recently that

a formalized method named the “localization landscape” based upon solv-

ing a Dirichlet problem corresponding to the Schrodinger equation allows

one to derive a “landscape” function that effectively predicts the localiza-

tion regions of the wave functions. However, as the energy values of the

system enlarge, states become essentially delocalized as they get enough en-

ergy to surpass the potential barriers, making them difficult to predict. The

present work is focused on resolving this difficulty by coupling the formal-

ism with discrete supersymmetry, which allows for generation of a hierar-

chy of isospectral Hamiltonians, with the ground state removed. Because

the ground state is removed every iteration of discrete SUSY, we “climb”

the ladder of eigenstates by generating new Hamiltonians whose low energy

eigenstates correspond to the high energy eigenstates of the original system.

A new landscape formalism was needed, as nearest neighbor hopping values

become non-constant throughout iterations of supersymmetry. Limitations

including the alteration of eigenstates throughout the supersymmetry process

and potential ways to undo the transformation are discussed. Future work

and applications include analysis on specific models, like the Andre-Aubry

model, and further expansion on the theoretical rigor of the formalism.
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1 Introduction

We often encounter cases where we would like to approximate eigenvalues

and eigenvectors in the context of an eigenvalue problem instead of directly

solving. This problem is common in large systems, such as those that com-

monly show up in physics, because diagonalizing a matrix becomes inefficient

and simply approximating the eigenvectors saves computing time and still

satisfies the requirements for analysis.

In the 20th century, Anderson observed electronic states of random po-

tential systems exponentially localizing in tight regions in a phenomenon now

called “Anderson Localization” [1]. This is explained due to destructive in-

terference of reflected waves in the random potential. Anderson localization

was observationally confirmed multiple times and became an important topic

of study [2–5], but it was not until quite recently that a formalized method

to derive a function that can predict the localization regions was pioneered,

and will be discussed in further detail in Section 1.1 [6, 7]. Arnold et. al

expanded this formalism to also predicting eigenvalues based on the local

minima of the landscape function [8].

However, as we go up to higher energy values, the corresponding states

of the system become harder to predict. To see why, imagine the classical

example of a ball in a valley; when bounded by high cliffs, it remains localized

within the valley. However, given more energy, it can often scale the cliffs

and enter new valleys in the domain. Analogously, eigenstates surpass their

nearby barriers when they correspond to sufficiently high energy, becoming

“delocalized.” The approximation in particular of delocalized eigenstates

that appear correspondingly to high energy states has always proved difficult,
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as the function becomes spread across the domain.

In this work, we aim to develop an iterative coupling algorithm that

allows for approximation of these delocalized states. We will discuss each

part separately.

1.1 Localization Landscape

There has been a lot of interest in the remarkable “localization landscape”

as it is able to predict the localization regions of the eigenfunctions of a

Hamiltonian. The concept can be introduced quite simply: in the continuum

case, given a Schrodinger equation for one particle, we can define a new

function u based on the Green’s function H−1(r, r′).

[
h̄

2m
∇2 + V ]ψ = Hψ = Eψ, u =

∫
Ω

|H−1(r, r′)|dr′ (1)

u is called the localization landscape, as it depends on r. The only constraint

we place on our Hamiltonian is that V ≥ 0. This necessarily results in a

positive definite Hamiltonian i.e. E ≥ 0. Thus, the absolute value bars

disappear, and then u simply becomes the solution to a significantly easier

Dirichlet problem:

[
h̄

2m
∇2 + V ]u = Hu = 1 (2)

It can be shown that u also satisfies the following relationship:

|ψ(x)| ≤ Eu(x) (3)

Due to normalization of the wave function, this constraint is only meaningful

when u ≤ 1/E. Thus, in regions where u satisfies this inequality, we expect
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Figure 1: A random 40 site potential is plotted on the left. On the right, the correspond-

ing landscape function W, or pseudopotential, is plotted with the 4 lowest eigenstates of

a random potential. The eigenvalues are also shown through dashed lines to reveal the

predicted localization regions of the respective eigenstates.

the wave function to be localized. The appearance of this relationship moti-

vates us to define a new function W = 1/u, so that the relationship becomes

when W ≤ E. W , as plotted on the right in Fig. 1, appears as a smoothed

version of the random potential V on the left, and thus is often called the

“pseudopotential.” We can see from Fig. 1 that the landscape does indeed

accurately predict the locations of the eigenstates, and the eigenvalues re-

veal the locations in which the eigenstates reside. This conclusion has been

mathematically and observationally proven to work in many contexts and

with various random potentials [7, 9].

This is rather remarkable; instead of having to diagonalize a large matrix

to find all eigenvalues and eigenstates, which often takes about N2 log(N)

time, we simply invert the matrix or solve the linear system of Hu = 1, which

takes more around N log(N) time.
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However, the limitations of the localization landscape become apparent in

higher energy states: as E grows, it surpasses the lower peaks of W and thus

adjacent localization regions join together, thus delocalizing the eigenstates.

The landscape then becomes pretty poor at predicting the location and decay

of the these eigenstates. It has been shown that there is also localization that

can be predicted at other parts of the spectrum through a similar formalism

[10], but behavior elsewhere still remains unpredictable.

This localization landscape notion has been generalized to discrete lat-

tices, which is our focus in this work since we are working with supersym-

metry on a lattice [10]. Assuming a lattice on sites i = 1, ..., L with constant

nearest neighbor hopping of t and boundary conditions of ψ0 = ψL+1 = 0 we

can reexpress the Schrodinger equation defined in Eq. 1 as the following:

−t(ψi−1 + ψi+1) + Vi(ψi) = λiψi (4)

Essentially, this is the discrete version of the Schrodinger equation. Thus,

the corresponding Dirichlet problem changes as well:

−t(ui−1 + ui+1 − 2ui) + (Vi − 2t)ui = 1 (5)

with boundary conditions u0 = uL+1 = 0. There is also a corresponding

inequality for Eq. 3 in the discrete case (j = 1, ..., L):

|ψj|
maxk |ψk|

≤ λuj (6)

Again, the discrete case experiences the same limitations as the the contin-

uum case in predicting delocalized states. In this work, we aim to address

this limitation through the coupling.

5



1.2 Supersymmetry

The other half of the coupling comes from supersymmetry, which provides

a method of generating a hierarchy of isospectral Hamiltonians with partner

superpotentials [11]. Like in Section 1.1, we will first discuss the continuum

case; the discrete case will be detailed as part of the algorithm in Section 2.1.

We begin again with the Schrodinger equation of a one particle system like

in Eq. 1. Assume 0 = 0. We can then factorize the Schrodinger equation in

the following ansatz:

H = A†A (7)

We can then construct H ′ = AA†, and upon inspection, it is just another

Hamiltonian with a potential V2:

H ′ = − h̄

2m

d2

dx2
+ V2(x) (8)

It turns out, the eigenvalues and eigenfunctions of H ′ and H are very related:

E ′n = En+1, and ψ′ = Aψ [11]. Notice, that the ground state energy of E0 = 0

has been annihilated in the process, resulting in a Hamiltonian in which the

lowest energy state is simply E1. Now, note that this could be done many

more times, each time resulting in a Hamiltonian with a higher ground state

energy than before.

Motivated by this annihilation of the ground state while preserving the

rest of the spectrum and related eigenstates, we aim to couple this with the

landscape formalism in order to predict the behavior of the middle-high end of

the spectrum of the original Hamiltonian. The proposed algorithm requires

discretizing both supersymmetry and the landscape formalism, which the

latter proves to be nontrivial. However, the results indicate that this coupling
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proves to be a potentially powerful predictor of delocalized eigenstates.

2 Theory

2.1 Discrete Supersymmetry

Discrete quantum supersymmetry begins the same way as continuous super-

symmetry, except with a discrete Hamiltonian and Schrodinger equation (Eq.

4). Notice: the left side can easily be expressed as left multiplying by a tridi-

agonal matrix Ĥ, where Ĥi,i = Vi, i = 1, ..., L, Ĥi+1,i = −t, i = 1, ...L − 1,

and Ĥi,i+1 = −t, i = 1, ...L − 1. The energy spectrum is now described

by the eigenvalues of the matrix and the corresponding wavefunctions are

described by the eigenvectors. Now, we would like to proceed with a factor-

ization/decomposition similar to Eq. 7.

Something already interesting on its own is that when the Hamiltonian

is expressed as a matrix, the ansatz in Eq. 7 is the same as a family of algo-

rithms in the computing community; namely, the LR/LU, QR, and Cholesky

decompositions/algorithms [12, 13]. Iterating through these algorithms has

been shown to converge to a diagonal matrix, thus exposing the eigenval-

ues [14]. Knowing this connection allows us to both speed up computation

time and make some important observations.

Primarily, we notice that our assumption that E0 = 0 necessarily implies

our matrix Hamiltonian is now positive semi-definite. Problematically, a

Cholesky decomposition is only unique when the matrix is positive definite;

however, with a minor alteration, this problem is fixed. If the factors are

rectangular instead of square, the decomposition is now unique and we avoid
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directly calling it a Cholesky decomposition. In other words, when A and

A† are of dimensions N by N − 1 and N − 1 by N respectively, the decom-

position in Eq. 7 becomes unique. When the factors were square, they were

bidiagonal; that property remains, but in rectangular form. A† is simply a

bidiagonal square matrix but with the last column removed, while A is a

bidiagonal square matrix with the last row removed.

Now, we can decompose the matrix , flip the factors, and construct

H ′ = AA†. By properties of matrix algebra, H ′ is N − 1 by N − 1, and

correspondingly, only has N − 1 eigenvalues. This dimensional reduction

makes sense, because we want to be removing the ground state in the pro-

cess of constructing H ′. Thus, we still have the previous relations between

the eigenvalues and eigenvectors of H and H ′: E ′n = En+1, and ψ′ = Aψ.

With the newly defined rectangular Cholesky decomposition, we can now

construct a hierarchy of discrete isospectral Hamiltonians.

2.2 Non-constant Hopping Landscape Formalism

Let the number of sites be L throughout the following calculations. A key

observation is that throughout iterations of discrete supersymmetry, our as-

sumption that t is constant falls apart. In fact, we cannot even assume that

ti > 0, i = 1, ....L − 1. Thus, we need to redefine the discrete landscape

formalism proposed in Section 1.1.

We first begin with a new Schrodinger equation, defined for hopping ti

that represents hopping from the ith site to the i+1th site, the same boundary

conditions as before with the new condition that t0 = tL = 0, on i = 1, ..., L:

−ti−1(ψi−1)− ti(ψi+1) + Vi(ψi) = Eψi (9)
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Notice that Eq. 9 can be rewritten into the following equation:

−ti−1(ψi−1 − ψi)− ti(ψi+1 − ψi) + (Vi − ti − ti+1)ψi = Eψi (10)

This reexpression will prove important when we need to derive the necessary

constraints for this formalism to work.

u is thus the solution to the corresponding Dirichlet problem:

−ti−1(ui−1)− ti(ui+1) + Vi(ui) = 1 (11)

We can similarly reexpress this equation:

−ti−1(ui−1 − ui)− ti(ui+1 − ui) + (Vi − ti − ti+1)ui = 1 (12)

We now define t = [t1, ..., tL−1], and notice how Eqs. 9 and 11 can then be

written as Hψ = Eψi and Hu = 1, respectively, with Hi,i = V i and both off

diagonals of H as −t. For ease, define V − ti − ti−1 = Q.

We are still missing the analogous inequality presented in Eqs. 6 and 3

that allows us to impose restrictions on the localization region of the eigen-

states. The inequality is the most important part of the landscape formalism

and deriving it proves to be nontrivial when the constant hopping constraint

is relaxed.

To generalize the discrete landscape formalism to a non-constant t, we

need to first prove some lemmas. We follow logic very similar to the proofs

and lemmas demonstrated in the appendix of [10]. One of our assumptions

will be that ti > 0, i = 1, ..., L− 1. On face, this looks like a clear violation

of our idea of generalizing to a variable hopping because we are assuming

all the tis are of the same sign; however, this condition is valid because the

supersymmetry process we will end up coupling with is only affected by the
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absolute value of ti and is not affected by the sign. Therefore, we can begin

with the following statement:

Lemma 2.1. For ti > 0, i = 1, ...., L−1, t0 = tL = 0, Q > 0, if −ti−1(ui−1)−

ti(ui+1) + Vi(ui) ≥ 0, i = 1, ...., L, and boundary conditions u0 = uL+1 = 0,

then ui > 0, i = 1, ..., L.

Proof. The logic is almost exactly the same as [10], with minor changes in

the setup. We prove by contradiction. Begin by assuming the existence

of a minimum ”in” the domain; in other words, ∃i0 s.t. ui0 ≤ ui0+1 and

ui0 ≤ ui0− . Combining these inequalities into one vector expression, we

have

ui−1 − ui
ui+1 − ui

 ≥
0

0

. However, notice we can reexpress our condition

with a vector dot product:

−ti−1

−ti

 ·
ui−1 − ui
ui+1 − ui

 + (Q)ui ≥ 0, and thusti−1

ti

 ·
ui−1 − ui
ui+1 − ui

 ≤ (Vi − ti − ti+1)ui. We can say

0

0

 ≤
ui−1 − ui
ui+1 − ui

 ≤ 1
ti−1

1
ti

 · Q(ui), and then if Q ≥ 0, clearly ui0 ≥ 0 because we have assumed

ti ≥ 0 and Q ≥ 0. However, our initial assumption was that ui0 was a

minimum, meaning that it had to be lower than the boundary conditions of

u0 = uL+1 = 0. This is a contradiction, so we conclude that there cannot exist

a minimum ”inside” the domain and thus all values of u are non-negative.

To show strict positivity, the logic is simple: notice if ∃i0 s.t. ui0 = 0,

ui0+1 = ui0−1 = 0 as well because ui0 cannot be a local minima. This pattern

continues, and we simply conclude that if one value of u is equal to 0, all

values of u must be 0 as well, and thus −ti−1(ui−1)− ti(ui+1)+Vi(ui) = 0, i =
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1, ...., L.

Previously, our condition for positivity of u was that V > 2t, but notice

that Lemma 2.1 reveals the condition is now altered to V − ti− ti−1 = Q > 0.

Lemma 2.2. For matrix H as defined earlier to express the Dirichlet problem

as Hu = 1, there exists H−1 and every entry is strictly positive.

The proof for Lemma 2.2 is exactly the same as in [10], so we choose not

to include it here. However, we now have the necessary proofs to derive the

inequality.

Theorem 2.3. Given −ti−1(ψi−1)− ti(ψi+1) + Vi(ψi) = λψi, i = 1, ..., L with

boundary conditions ψ0 = ψL+1 = 0 and t0 = tL = 0, Q = Vi − ti − ti−1 ≥ 0,

and ti ≥ 0i = 1, ...., L− 1, then:

|ψi|max(t)

maxk(|ψk)|
≥ λui ∀i = 1, ..., L

Proof. Using Lemma 2.2, this proof is straightforward:

ψi = (λA−1ψ)i = λ
L∑

k=1

A−1
i,kψk

Then, we can make a generalization to get our upper bound:

ψi ≤
λmaxk(|ψk|)

max(t)

The max(t) in the denominator has yet to be fully justified, but in numerical

results, it works well as a method of scaling by t. A more rigorous scaling

method is a part of future work.
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2.3 Coupling

Coupling discrete supersymmetry and the new landscape formalism was not

difficult, however some nuance was required due to technology limitations.

We begin with a randomly generated N = L site potential V > 0 (whether or

not this has constant t does not matter), and utilize the matrix representation

described in Section 2.1. In order to reproduce results, the randomness was

generated using md5 hashes with a random seed.

Hψ = Eψ (13)

Then, we can apply the appropriate landscape formalism to predict the eigen-

states, as shown in Fig 1.

To proceed to the next iteration, we first subtract away the ground state

energy. This is done by computingH ′ = H−E0I. Importantly, this operation

only shifts the eigenvalues, but does not alter the eigenstates. We can then

proceed with a rectangular Cholesky decomposition, as previously detailed,

and generate a new N − 1 by N − 1 Hamiltonian. We choose to implement

this quite primitively, because there is no direct method that can compute a

rectangular decomposition. We utilize the fact that the factors A and A† are

bidiagonal, and symbolically define all necessary elements. We then minimize

the Frobenius norm of H−A†A to be as close to 0 as possible instead of just

directly solving H−A†A = 0, as data beyond 6 decimal points is inaccurate.

After solving for A, we flip the factors and generate a new isospectral H ′

matrix. We ensure that Vi − ti − ti−1 ≥ 0 for all i to ensure strict positivity

of our u function. A transformation of the u function across iterations of

discrete supersymmetry is discussed in Section 4.1.
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Figure 2: The landscape function W is plotted after one iteration of the algorithm.

The dotted lines represent the boundaries of the localization regions of the corresponding

eigenstates.

We can then apply the non-constant hopping landscape formalism to

predict the eigenstates. Based on the same random potential as in Fig. 1,

we can perform one iteration of this process. It is important to remember

that the eigenstates look different because they are transformed from ψ to

Aψ. That alteration would appear problematic on face, but A is actually a

”local” operator, meaning that localized functions transformed by A tend to

remain localized. In fact, this transformation in it of itself is very interesting

because it means that A is an operator that can be used to, with enough

applications, change delocalized states into localized states.

The landscape function and eigenstates after one iteration are displayed

in Fig. 2. We observe that the altered localized eigenstates are still well

predicted by the landscape, and the localization regions provide bounds on

the spread of the eigenstate before it begins exponentially decaying. Beyond
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Figure 3: The landscape function and lowest eigenstates are plotted after 5 iterations of

the algorithm. The horizontal lines represent the t-scaled eigenvalues.

eigenstate 4, our wave functions clearly become delocalized, and more difficult

to predict.

The key feature of the algorithm is that it is iterative, meaning we can

simply apply it however many times we want. Fig. 3 displays the results

after 5 iterations. This figure is incredibly significant, as it demonstrates

that the formalism continues to work even after iterating all the way into

the middle of the spectrum, revealing states that would have previously been

delocalized across the sites.

As a sidenote, it is interesting to note that we can run this algorithm

until the Hamiltonian matrix becomes 1 by 1, then disappears (although it

would not prove very meaningful at that point).
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3 Conclusions

We can observe that the powerful relationship between the landscape and the

corresponding eigenstates still exists. The numerics reveal that this coupling

works well at predicting the low energy eigenstates at each iteration using

the new non-constant hopping landscape formalism. One problem appears to

be that the landscape valleys become out of order. For instance, the lowest

valley is meant to correspond to the lowest energy eigenstate. This problem

can likely be solved through some sort of scaling by the hopping, either on

the landscape or the eigenvalues.

In [10], a formalism was devised for predicting both very low energy

eigenstates and high energy eigenstates. However, with this new promising

discrete SUSY and landscape coupling, we can use the localization in exclu-

sively the lower states and predict behavior and localization of eigenstates

throughot the entire spectrum. 40-site systems are still very small, but they

show promise for running the algorithm on larger systems.

However, there are various limitations to this method: first, we can see

that the eigenstates are significantly altered, including dipping into negative

values. The main location is preserved, but in order to have meaningful

results, it is necessary that we can invert the transformation on the eigen-

states: recall that through iterations of discrete supersymmetry, ψ becomes

Aψ, where A is the right rectangular factor. A has been shown to be in-

vertible when square, but because the inverse definition differs when A is

rectangular, guaranteeing A−1 or some other inverse operation exists is more

difficult.

Finally, predicting the highest energy eigenstates (ex. the top 4 eigen-
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states) proves to be less meaningful, as the Hamiltonian’s size becomes small

and so does the u. Valleys/local minima require 3 points, so once our Hamil-

tonain is only 2 by 2, and we cannot use this method well anymore. But, at

that point, it may be more efficient to simply diagonalize the matrix, because

the added complexity coming from coupling with discrete supersymmetry re-

sults in a less significant difference between simply diagonalizing a matrix or

running our algorithm. At low dimensions this difference is negligible.

Future work in this area of research will include investigating specific

Hamiltonian systems which have interesting eigenstate behavior in the middle

of the spectrum that could not have previously been accessed. One such

model is the Aubry-Andre model, which includes a mobility edge that can

be tuned to produce an exact solution to the Schrodinger equation [15]. It

might also be interesting to see what happens when the entire spectrum is

preserved, as in generating a new Hamiltonian using N by N square factors

A and A† to preserve the ground state.

4 Appendix

4.1 u Transformation

Similar to how eigenstates have a transformation through iterations of dis-

crete supersymmetry, a transformation for u can also be derived between the

nth and n + 1th iteration. Let 1n denote a vector of length n of all ones.

We have the two following equations, taking into account the dimensional
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reduction:

Hu =1n = A†Au (14)

H ′u′ =1n−1 = AA†u
′

(15)

We can see that we could have just set the two LHS equal to each other

if the 1 vectors were the same length. Thus, we simply define the matrix B

to be an N by N − 1 matrix with all 1’s in the first column, for simplicity.

It could have been any N by N − 1 matrix with one 1 in each row. This

allows us to have a matrix that transforms 1n to 1n−1. With some additional

manipulation after setting the equations equal, we get our relationship:

u′ = (AA†)−1BA†Au (16)

We can also express the transformation through a Hadamard or element-

wise product.

AA†Au =A1n

H ′Au =A1n

u′ =H−11n−1 = Au ◦ 1

A1n

(17)
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