
SIGNATURES FOR HAND KINEMATIC SYNERGIES

ALAN CHEN AND ALEXEY IZMAILOV

To our dearest MCM teammate, Matthew Meeker

1. Introduction

Patterns underlying hand grasp motions lie at the crux of research into the de-
velopment of assistive devices and prostheses. However, this complex coordination
task presents a high-dimensional kinematic problem in which several features of the
human hand interact in poorly understood ways (joints alone have 27 degrees of
freedom). Several past studies have implicitly reduced dimensionality by focusing
on hand postures [SFS98] rather than entire grasping motions while others have
attempted direct computational methods [Jar+19] such as Principal Component
Analysis. As an alternative dimensionality reduction technique, we study the sig-
nature method in combination with classical machine learning models.

Recent developments in rough path theory have resulted in increased attention
to path signatures in the mathematical community. One of the advantages of a
signature-based approach lies in the ability of this computational object to cap-
ture key geometric and analytic properties of sequential data. Past successes of
these methods have included online character recognition [YJL15] and time-series
analysis and regression in a financial setting [LLN16]. Moreover, in combination
with standard techniques from machine learning, signature methods have resulted
in successful classification tasks in learning behavioral patterns of patients with
bipolar disorder [Arr+18]. Our aim is to improve upon the methodologies used in
these studies in the context of classifying kinematic hand synergies.

2. Theory

2.1. Notation. [k] denotes {1, 2, . . . , k}. X(I) for an index set I = {i1, . . . , in}
denotes the n dimensional path X(I) = {Xi1 , . . . , Xin} (pairs (ij , ik) for j ̸= k need
not be distinct).

2.2. Continuous Paths from Raw Sequential Data. Consider a collection ofN
d-tuples {X1i , X2i , . . . , Xdi}Ni=1, where each Xki represents a single one-dimensional
datum. This set of data can be embedded into a continuous path via interpolation.
In this series of experiments, we exclusively use linear interpolation but any method
is usable given a result such as Theorem 2.1.

2.3. Path Signature. The signature of a path is defined as a sequence of coor-
dinate iterated integrals. Let X : [0, T] → Rd be a continuous path with finite
p-variation for some p < 2. Then for a multi-index I = (i1, i2, . . . , ik), the iterated
integrals of order k with this multi-index are defined as

(2.1) S(X)I =

∫
0<u1<u2<···<uk<T

dXi1
u2
dXi2

u2
· · · dXik

uk

1

https://www.reddit.com/user/mjachi/

2 ALAN CHEN AND ALEXEY IZMAILOV

which exists because of the finite p variation condition, and the signature S(X) of
X is the infinite sequence
(2.2)

S(X) =
(
1, S(X)(1), S(X)(2), · · · , S(X)(d), S(X)(1,1), S(X)(1,2), · · ·

)
∈

∞∏
i=0

(Rd)⊗i

with the multi-index I consisting of all combinations of ij ∈ {1, 2, . . . , d} for j =
1, 2, . . . , k. S(X) is in the dual space T (Rd)∗ as mentioned, so that one can think of
the multi-indices as elements of T (Rd), and we take the corresponding coordinate
S(X)I when applying S(X). We investigate this deeper in later sections.

The signature can also be treated as a formal power series with coordinate-wise
addition, scalar multiplication, and the tensor product.

There are various useful gimmicks that come from the nice properties and defi-
nition of the signature of smooth paths. For example, for certain classes of paths,
the signature can be directly computed using an explicit formula. As an example
we directly compute the signature for the class of linear paths.

Lemma 2.1 (Signature of Line). Let X : [0, T] → Rd be linear in all dimensions.
For a multi-index I = (i1, i2, . . . , ik), the signature of X on [0, T] can be computed
as

(2.3) S(X)I =
1

k!

k∏
j=1

(
X(ij)(T)−X(ij)(0)

)
.

Proof. Because X is linear in all dimensions,

(2.4)
dX(i)

dt
=
X(i)(T)−X(i)(0)

T
∀i ∈ [d].

Computing the signature using Equation 2.1 and Equation 2.4,

S(X)I =

∫
0<u1<u2<···<uk<T

dXi1
u2
dXi2

u2
· · · dXik

uk

=
1

T k

 k∏
j=1

X(ij)(T)−X(ij)(0)

∫
0<u1<u2<···<uk<T

du1du2 · · · duk

=
1

T k

 k∏
j=1

X(ij)(T)−X(ij)(0)

(
T k

k!

)

=
1

k!

k∏
j=1

X(ij)(T)−X(ij)(0).

Clearly, linearity in all dimensions is not necessary; it is only needed in the k
dimensions I of interest. The nice paths encountered in this report will indeed be
linear in all dimensions due to linear interpolation. □

We now turn to some important properties of the signature.

2.4. Time Reparameterizations. A surjective, smooth, and nondecreasing map-
ping ψ : [0, T] → [0, T] is called a time reparameterization. The signature is
invariant under time reparameterizations.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 3

Theorem 2.2 (Invariance Under Time Reparameterizations). Let X : [0, T] → Rd
be a path. Let X̃ : [0, T] → Rd be defined as

X̃(t) = X(ψ(t)).

Then, if I = (i1, i2, . . . , ik),

(2.5) S(X̃)I = S(X)I .

Proof. First, this can be shown for any general path integral. Let X,Y : [0, T] → R
be two one dimensional paths, and X̃ and Ỹ be their respective reparameterizations
which still have nice properties because ψ is assumed to be nice. Then,

(2.6)

∫ T

0

Ỹ (t)dX̃(t) =

∫ T

0

Ỹ (t)
dX(ψ(t))

dψ

dψ

dt
dt.

Using a simple change of variables u = ψ(t) and du = dψ
dt dt,

(2.7) =

∫ T

0

Y (u)
dX

du
du =

∫ T

0

Y (u)dX,

which as expected.
Now, noting that the signature as defined in Equation 2.1 is just k path inte-

grals, it becomes apparent that this argument can be applied identically k times to
conclude the invariance of signatures under time reparameterizations. □

Intuitively, this property should be interpreted that the signature’s values do not
care about how quickly an action is performed; they only depend on the shape of
the path. A formal generalization of this intuition to beyond just smooth paths is
“tree-like” equivalence [HK14].

2.5. Important Identities. A very interesting property of signatures is their re-
lation to linearity. Namely, there is an interesting identity that relates products of
lower level signature terms to a linear combination of higher level signature terms.

2.5.1. Shuffle Algebra. First, define an algebra U over a commutative associative
ring with identity element e. Select d ∈ Z+ and define U with the basis

(2.8) {e∅} ∪ {e(i1,...in) : ik ∈ [d]∀k ∈ [n] and n = 1, 2, . . .}.

e is also the identity element in U with respect to the multiplication � : U ×U → U
that we will define now. In order to define �, we define the bilinear “append”
operation ∨ : U × U → U as

(2.9) e(i1,i2,...,ik) ∨ e(ik+1) = e(i1,i2,...,ik,ik+1).

Now, we can define the shuffle product � : U × U → U recursively for two finite
ordered index sets I = (i1, i2, . . . , ik) and J = (j1, j2, . . . , jm).

(2.10)
e(i1,...,ik) � e(j1,...jm) =[e(i1,...,ik−1) � e(j1,...jm)] ∨ eik

+ [e(i1,...,ik) � e(j1,...jm−1)] ∨ eim ,

and e∅ � eI = eI � e∅ = eI . It can be shown that (U ,�) is a unital commutative
associative algebra.

4 ALAN CHEN AND ALEXEY IZMAILOV

2.5.2. Signatures Shuffle Algebra. Under this shuffle algebra framework, we can
define U =

⊕∞
i=0(Rd)⊗i, so that we can define the following signature mapping.

Definition 2.3 (Signature Mapping). The signature mapping ⟨·, ·⟩ is defined as

(2.11) ⟨·, ·⟩ :
∞∏
i=0

(Rd)⊗i ×
∞⊕
i=0

(Rd)⊗i → R, (S(X), eI) 7→ S(X)I .

Observe that ⟨·, ·⟩ is linear because it is just path integrals. [Ree58] noted the
following shuffle product identity holds:

Theorem 2.4 (Shuffle Product Identity). Let I = (i1, i2, . . . , ik) and J = (j1, j2, . . . , jm)
be two index sets and X : [0, T] → Rd be so that S(X) is well defined. Then,

(2.12) ⟨S(X), eI � eJ⟩ = ⟨S(X), eI⟩⟨S(X), eJ⟩.
Proof. The shuffle product identity can be shown through induction on |I| + |J |.
The base cases of |I|+ |J | < 2 are straightforward via direct computation. Because
|I|, |J | ∈ Z+ ∪ {0}, WLOG there are 2 subcases.

Subcase 1: |I| = |J | = 0. Then, by definition,

⟨S(X), eI⟩⟨S(X), eJ⟩ = 12 = 1 = ⟨S(X), e∅⟩ = ⟨S(X), eI � e∅⟩ = ⟨S(X), eI � eJ⟩.
Subcase 2: |I| = 1, |J | = 0. Then,

⟨S(X), eI⟩⟨S(X), eJ⟩ = ⟨S(X), eI⟩(1) = ⟨S(X), eI � e∅⟩ = ⟨S(X), eI � eJ⟩.
So, as the inductive hypothesis assume that the shuffle product identity is true

for all I ′, J ′ such that |I ′|+ |J ′| < k +m. We want to show that it is also true for
our current index sets I, J where |I|+ |J | = k +m.

For the sake of argument, define a “parameterized signature” mapping St : U →
R as follows:

(2.13) St(e(i1,...,ik)) =

∫ t

0

Su(e(i1,...,ik−1))dX
ik(u),

with the base case that St(e∅) = 1. For intuition, observe that ⟨S(X), eI⟩ =
S(X)I = ST (eI).

We note the interplay between this definition of the signature with the operation
∨. Namely, for any eI ∈ U ,

(2.14) St(eI ∨ ei) =
∫ t

0

Su(eI)dX
i(u).

In particular, we want to know more about the product St(eI)St(eJ). Apply
integration by parts and the inductive definition of the signature to see that

St(eI)St(eJ) =

∫ t

0

Su(eI)dSu(eJ) +

∫ t

0

Su(eJ)dSu(eI)

=

∫ t

0

Su(eI)Su(e(j1,...jm−1))dX
jm(u)

+

∫ t

0

Su(eJ)Su(e(i1,...ik−1)dX
ik(u).

Note the level of both integrands:

|I|+ |{j1, . . . jm−1}| = k + (m− 1) < k +m,

|J |+ |{i1, . . . , ik−1}| = m+ (k − 1) < k +m.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 5

Thus, applying the inductive hypothesis reveals that

St(eI)St(eJ) = St((e(i1,...,ik) � e(j1,...,jm−1)) ∨ ejm)

+ St((e(i1,...,ik−1) � e(j1,...,jm)) ∨ eik−1
)

= St((e(i1,...,ik) � e(j1,...,jm−1)) ∨ ejm
+ (e(i1,...,ik−1) � e(j1,...,jm)) ∨ eik−1

)

= St(eI � eJ).

Now just let t = T , and the desired result follows from induction. □

Corollary 2.4.1. Any polynomial of signature terms can be expressed as a linear
combination of other signature terms.

Proof. This inductively follows from the shuffle product identity, as any polynomial
term of signature terms of degree d can be written as a sum of polynomial signature
terms of degree d− 1. We can continue applications of the shuffle product identity
on all polynomial terms until d = 2, wherein applying the shuffle product identity
reduces all terms to degree 2− 1 = 1 i.e. a linear combination. □

2.5.3. Chen’s Identity. Consider two paths X : [0, T1] → Rd and Y : [0, T2] → Rd.
Define Z : [0, T1 + T2] → Rd as the concatenation of X and Y :

(2.15) Z(t) =

{
X(t) t ∈ [0, T1]

X(T1) + (Y (t− T1)− Y (0)) t ∈ (T1, T1 + T2].

The following result is incredibly useful for computing signatures of a concatenated
path, as it reduces a tricky integral to the tensor product of two simpler signatures.

Theorem 2.5 (Chen’s Identity). For any two paths X : [0, T1] → Rd, Y : [0, T2] →
Rd and their concatenation Z : [0, T1 + T2] → Rd,
(2.16) S(Z) = S(X)⊗ S(Y).

More specifically, for any index set I = (i1, i2, . . . , ik),

(2.17) S(Z)I =

k∑
j=0

S(X)(i1,...,ij)S(Y)(ij+1,...,ik).

Proof. To prove Chen’s relationship, we can use direct computation.
If I = ∅, then in both Equation 2.16 and Equation 2.17, both sides evaluate to

1, so the relationship holds.
Now, let Ik represent a nonempty index set. Setting up the signature computa-

tion,

(2.18) S(Z)Ik =

∫
0<t1<···<tk<T1+T2

dZ(Ik).

This computation splits up into the sum of integrals on sets of this form:

Aj = {[ti]ki=1 : 0 < t1 < · · · < tj ≤ T1 < tj+1 < · · · < tk < T1 + T2}.
for all j. First, we prove that Aj1 ∩Aj2 = ∅ if j1 ̸= j2. WLOG, let j1 < j2. Notice
that

Aj1 ⊆ {[ti]ki=1k : T1 < tj1+1 < T1 + T2}
but

Aj2 ⊆ {[ti]ki=1k : 0 < tj1+1 ≤ T1}.

6 ALAN CHEN AND ALEXEY IZMAILOV

Because the sets on the RHS have no overlap, it follows that Aj1 ∩ Aj2 = ∅ too.
Thus, since

k⋃
j=0

Aj = {[ti]ki=1 : 0 < t1 < · · · < tk < T1 + T2},

the collection {Aj}kj=0 is in fact a partition of the original set. Specifically,

(2.19) S(Z)Ik+1 =

k∑
j=0

∫
Aj

dZ(Ik+1).

We can split up this integral with respect to Aj again into a product of two lower
integrals because Z is defined as a concatenation. These integrals are defined on
the following sets:

Aj,1 = {0 < t1 < · · · < tj < T1},
Aj,2 = {T1 < tj+1 < · · · < tk < T1 + T2}.

Thus, Equation 2.19 becomes

=

k∑
j=0

∫
Aj,1

∫
Aj,2

dZ(ij+1,...,ik)dX(i1,...,ij)

=

k∑
j=0

∫
Aj,1

dX(i1,...,ij)

∫
Aj,2

dZ(ij+1,...,ik).(2.20)

These terms look awfully familiar. Reparameterizing Aj,2 so that everything is
shifted left by T1, these integrals are exactly the signature terms. Formally,

Aj,2 = {0 < tj+1 − T1 < · · · < tk − T1 < T2}.

Since the ts are just dummy variables, Equation 2.20 just works out to be

k∑
j=0

S(X)(i1,...,ij)S(Y)(ij+1,...ik)

as desired. □

One can observe similarities in structure to some important definitions from the
shuffle product identity, namely the deconcatenation operator ∆.

2.6. Computing Signatures. Now, consider the problem of computing the sig-
nature of a discrete data stream such as in subsection 2.2. The data stream as a
continuous path through an interpolation method. Alternative techniques such as
Monte Carlo integration can be attempted, but because of Chen’s identity there
exists an efficient and analytically exact method. Computing a signature can be
broken down into three steps:

(1) Interpolate data points
(2) Compute signatures on interpolated segments
(3) Concatenate interpolated segments with Chen’s identity

Step (2) is usually easy: assuming a “nice” and uniformly applied interpolation
method, the signature can be analytically precomputed. For example, for linear
interpolation, Theorem 2.1 can be applied.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 7

Assuming linear interpolation, we can analyze the full algorithmic complexity of
computing S(X)I for some I with |I| ≤ d. Step (1) is O(N), step (2) is O(Nd),
and finally step (3) is O(d) as well. Thus, the signature can be computed in O(Nd)
time, which is fast enough for almost all applications, where d is usually O(102) or
smaller.

This computation is implemented under the hood in the iisignature Python
package [RG20].

2.7. Log-Signature. Continue to consider the shuffle algebra (U ,�) as defined in
subsubsection 2.5.1. If the d dimensional path takes values in Rd, U can be thought
of as T (Rd) =

⊕∞
i=1(Rd)⊗i, or the tensor space over Rd.

Now, consider the dual space T (Rd)∗ and a particular subset of functionals which
are defined to be the characters (equiv. algebraic homomorphisms). A functional
g is defined to be a character if it respects the shuffle product i.e.

(2.21) g(X � Y) = g(X) · g(Y)

where · is multiplication in R. Notice, necessarily, g(e∅) = 1 or 0. However, we
choose not to include g(e∅) = 0 since that would be an noninvertible element as we
will see later. Only one function is being thrown out - if g(e∅)) = 0, then g(eI) ≡ 0
for all eI .

We also define the deconcatenation operator ∆ : T (Rd) → T (Rd)⊗ T (Rd) as

(2.22) ∆[e(i1,...,in)] =

n∑
j=0

e(i1,...,ij) ⊗ e(ij+1,...,in).

It turns out that the set of all characters and the dual of the deconcatenation
operator (appropriately called the concatenation operator) ∗ : T (Rd)∗ × T (Rd)∗ →
T (Rd)∗:

(2.23) (g ∗ h)(eI) = (g⊗̃h)(∆eI) =
n∑
j=0

g(e(i1,...,ij))h(e(ij+1,...,in)).

form a group (Characters, ∗), where g⊗̃h is just a notation to reveal the relationship
to the deconcatenation operator. g⊗̃h means “evaluate g on the left and h on the
right.”

Lemma 2.6 (Character Group). (Characters, ∗) forms a group.

Proof. We need to show associativity, existence of identity, and existence of inverses
in Characters with respect to ∗.

Firstly, associativity is easy from definition, since the ∗ operation decomposes
down into associative operations in the underlying Rd.

We want to show for any f, g, h ∈ T (Rd)∗,

(2.24) f ∗ (g ∗ h) = (f ∗ g) ∗ h.

8 ALAN CHEN AND ALEXEY IZMAILOV

Expanding from definition,

f ∗ (g ∗ h)(eI) =
n∑
j=0

f(e(i1,...,ij))(g ∗ h)(e(ij+1,...,in))

=

n∑
j=0

f(e(i1,...,ij))

n∑
k=j

g(e(ij+1,...,ik))h(e(ik+1,...,in))

=

n∑
j=0

n∑
k=j

f(e(i1,...,ij))g(e(ij+1,...,ik))h(e(ik+1,...,in)).

Since these are finite sums we can exchange the order:

=

n∑
k=0

k∑
j=0

f(e(i1,...,ij))g(e(ij+1,...,ik))h(e(ik+1,...,in))

=

n∑
k=0

 k∑
j=0

f(e(i1,...,ij))g(e(ij+1,...,ik))

h(e(ik+1,...,in))

=

n∑
k=0

(f ∗ g)(e(i1,...,ik))h(e(ik+1,...,in))

= (f ∗ g) ∗ h.

Next, the identity element is just e ∈ T (Rd)∗ where

(2.25) e(eI) =

{
1 I = ∅
0 otherwise.

This is a character because it maps any nontrivial set to 0, but also e(f(∅)�f(∅)) =
1 and e(f(∅))e(f(∅)) = 1. Clearly, for any g ∈ T (Rd) and eI ∈ T (Rd), by definition
in Equation 2.23,

(2.26) (g ∗ e)(eI) = (e ∗ g)(eI) = g(eI).

The inverse of any g ∈ Characters can be derived inductively, since by definition
we want (g ∗ g−1)(eI) = 0 for all eI ∈ U \ {e∅}. It can be verified that the following
definition is indeed a correct inverse in the character group through an inductive
argument as well.

Define the set of ordered k-partitions of an index set of size n as

(2.27) Πk,n =

{
{x1, . . . xk} :

k∑
i=1

xi = n, xi > 0 for all i ∈ [k]

}
.

For all π ∈ Πk,n, define πm for m ∈ [k] as

(2.28) πm =
(
i1+

∑m−1
j=1 xj

, . . . , i∑m
j=1 xj

)
.

Then, for I = {i1, . . . , in}, it can be shown that

(2.29) g−1(eI) =

n∑
k=1

∑
π∈Πk,n

(−1)k
k∏
j=1

g(eπj)

SIGNATURES FOR HAND KINEMATIC SYNERGIES 9

is the unique inverse for g. To see how, again we can work from definition - consider
eI where |I| ≥ 1 so that I = {i1, . . . , in}.

(g ∗ g−1)(eI) =

n∑
j=0

g(e(i1,...,ij))g
−1(e(ij+1,...,in))

=

n∑
k=1

∑
π∈Πk,n

(−1)k
k∏
j=1

g(eπj
)

︸ ︷︷ ︸
Term 1

+

n∑
j=1

g(e(i1,...,ij))g
−1(e(ij+1,...,in))︸ ︷︷ ︸

Term 2

.

Consider some arbitrary term in Term 1. It looks like

(−1)k
k∏
j=1

g(eπj
)

for some π ∈ Πk,n. Notice that a mirrored term appears in Term 2 that looks like

g(eπ1)

(−1)k−1
k∏
j=2

g(eπj)

 .

These are exactly negatives of each other, since they only differ by a power of −1.
Thus, any term in Term 1 is cancelled by exactly one term in Term 2. Likewise,
each term in Term 2 has a term in Term 1 that cancels it. Thus, there exists a
bijection between terms in Term 1 and Term 2 and it follows that the expression
evaluates to 0.

Thus, we conclude that (Characters, ∗) is indeed a group. □

A finitely truncated (Characters, ∗) can also be proven to be a Lie group.
We now define the derivation of T (Rd) based on the counit ϵ ∈ T (Rd)∗. In this

case, the derivation Der is

(2.30) Der = {f : T (Rd) → R : f ◦� = ϵ⊗ f + f ⊗ ϵ}.
Der can be proven to be a Lie algebra with Lie bracket defined as the commutator:

(2.31) [f, g]∗ = f ∗ g − g ∗ f.
Because of the Lie algebra-Lie group correspondence, there exists a mapping

between these two spaces (the characters group and the derivation). Namely, for
any g ∈ Characters,

(2.32) log(1 + g) =

∞∑
k=1

(−1)k−1 g
∗k

k!
∈ Der,

and in the opposite direction, for all g ∈ Der,

(2.33) exp(g) =

∞∑
k=0

g∗k

k!
∈ Characters.

As a final note linking this algebraic monstrosity back to the signature, the
signature mapping is of course a character as it obeys the shuffle product identity.
Thus, the log signature is defined as

(2.34) log(1 + S(X)) =

∞∑
k=1

(−1)k−1S(X)∗k

k!

10 ALAN CHEN AND ALEXEY IZMAILOV

Interpolation (sklearn, numpy)

Preprocessing (sklearn, numpy)

Signature (iisignature)

Model (sklearn)

Figure 1. Pipeline overview of model.

Figure 2. Cyberglove sensor mapping (1 indexed).

and lives in the Der Lie algebra.
There are many theoretical advantages of working with the log signature instead

of the original signature, but application wise, the log-signature can be thought
of as a compact representation of the entire signature (see Table 1), removing the
redundancy in the signature exposed by the shuffle product identity. We fit our
models onto the log signature instead of the signature itself and justify this decision
in subsection 3.3.

3. Experiments

An overview of our model pipeline is displayed in Figure 1.

3.1. Data. We use Cyberglove data from DB1 and DB5 taken from the NinaPro
datasets 1 and 5 [Jar+19]. The model is the Cyberglove 2, which has 22 sensors
located in various positions on the wearer’s hand as depicted in Figure 2. In to-
tal there are 6 repetitions from 37 intact (non-amputee) subjects. We apply the
signature method to attempt to classify different movements of the fingers.

For the small case study done here, we classify between 4 exercises (stimuli
{1, 3, 5, 7}) respectively described as:

(1) index finger flexion,
(3) middle finger flexion,
(5) ring finger flexion,
(7) little finger flexion.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 11

Figure 3. Signals of selected sensors (0-indexed, not 1 indexed
like Figure 2) for exercises 1, 3, 5, 7.

We expect to see drastic differences between these movements, namely in which
sensors are being activated. Visually, they are completely different movements as
shown in Figure 3 and the signature captures this.

3.2. Preprocessing. Firstly, the paths are normalized to remove the means and
set variances to 1. Normalization is necessary, since as shown in Figure 3, the paths
have wildly different means and variances.

3.2.1. Data Engineering. Because of a limited set of data (only 37 subjects with 4
training repetitions of each stimulus), we use preprocessing techniques to expand
the data. Let X = {Xi}Ni=1 be the discrete datastream of N points. We provide
formal definitions of two methods of engineering additional data here, but emphasize
their intuitive nature.

(1) Overlapping windows: following [Jar+19], we construct a set of overlapping
windows W parameterized by window sz and overlap ≤ ⌊window sz/2⌋
such that

W = {Wi}Mi=1, M =

⌈
N − window sz

overlap

⌉
,

and Wi is defined as

Wi = [Xri , Xsi],

ri = (i− 1) · (window sz - overlap) + 1,

si = min (N, ri + window sz) .

We use window sz = 200 and overlap = 100 for our experiments.
Intuition: slide a “window” of a particular size over the time interval, each

12 ALAN CHEN AND ALEXEY IZMAILOV

Table 1. Dimensions of signature & log-signature up to depth 4.

Dimensions Signature Log Signature
22 245410 62238
5 780 205

time moving it by an amount that results in the specified overlap between
the new window and the previous window.

(2) Downsampling: we downsample X into M paths {Wi}Mi=1 where M is the
parameter. The paths are constructed as

Wk = {Xi : i modM ≡ k modM}.
Clearly these paths will differ by at most 1 in length. In our case, to be
comparable to the previous method, we set M = ⌊N/200⌋, so that each
path is still around 200 data points long.
Intuition: convert a “high” frequency path into multiple “low” frequency
copies.

Remark: Ragged data is not an issue under the signature framework. There are
no issues if one of the windows or downsampled paths is not exactly the same size
as the others, since the signature acts like a uniform dimensionality reduction with
respect to the time axis.

Because of the signature’s properties, intuitively (2) is expected to perform better
because it preserves the overall shape of the path, whereas (1) potentially results in
many similarly shaped paths that are labelled differently. We confirm this suspicion
experimentally in subsection 4.2.

3.2.2. Dataset Split. We split the dataset into 2 sets: training and testing (which
is different than the traditional train-validation-test split because of limited data)
using the same method as [Jar+19]: repetitions {1, 3, 4, 6} are used as training
data while repetitions {2, 5} are used for testing. Furthermore, the path data is
normalized so that the empirical expectation is 0 and variance is 1.

After applying preprocessing method (1), there are 2204 training paths and 1065
testing paths whereas applying preprocessing method (2) results in 1241 training
data points and 609 testing data points.

3.3. Limitations of Signatures. The main limitation of applying signatures is
that the number of features grows exponentially with respect to d. For example,
suppose we wanted to compute the signature up to depth 4, which is a reasonable
depth (1 and 2 are pretty trivial values). We display the values in Table 1.

It is extremely apparent that if we were to use the entire glove data (22 di-
mensions), trying to apply machine learning would not be computationally feasible
nor would it be very meaningful - our model would overfit completely because the
complexity of the hypothesis class is so vast. Thus, we introduce bias into the
system through a sort of “reverse feature engineering”: instead of using the entire
glove data, we selectively choose the features that have the greatest variation. For
the selected exercises, this intentionally ends up being the features displayed in
Figure 3.

To even further reduce the dimensions, we use the log signature instead of the sig-
nature itself. We remark that in theory the shuffle product identity no longer holds

SIGNATURES FOR HAND KINEMATIC SYNERGIES 13

when using the log signature - however, we determine that the performance gained
from reducing dimensionality of the feature space, particularly for generalizing to
unseen data, outweighs having the linear relationships.

For more theoretical justification as to why this is a reasonable choice, we note

that the number of terms in X(I)
�X(J) is exactly

(|I|+|J|
|I|

)
, which grows quickly as

|I| and |J | grow. Thus, the beautiful idea that any polynomial of signature terms
can be expressed as a linear combination of higher order terms lives in the vast
realm of theoretical results that are “pretty, but computationally intractable.”

3.4. Relevant Models. Despite the reduction in dimensions through reverse fea-
ture engineering, we must use methods that are robust against overfitting in high
dimensional feature spaces since the dimension is still large relative to the limited
dataset size. We survey 3 methods from simplest to most complex: regularized
linear models (ElasticNet), support vector machines, and basic MLPs. For all, we
use their respective implementations in sklearn and investigate hyperparameter
tuning through cross validation.

3.4.1. ElasticNet. We recall that ElasticNet is a linear model that attempts to
minimize the following combined L1 and L2 regularized least squares objective for
w ∈ Rd (in a binary classification problem):

(3.1) argmin
w

1

2n
||y −Xw||22 + αγ||w||1 +

α

2
(1− γ)||w||22,

where γ is a ratio between the L1 and L2 terms and α is the weighting of regular-
ization. Extending to multi class just turns w to a matrix and y becomes a one hot
encoded vector of the true class i.e. if label j is the correct label, then the y for
that training example looks like

y = (0, 0, . . . , 0︸ ︷︷ ︸
j−1 zeros

, 1, 0, . . . 0).

Clearly, because we are attempting to minimize the objective in Equation 3.1, we
see that the regularization terms penalize the weights. Namely, the L1 regulariza-
tion (αγ||w||1 term) injects sparsity into the weights, as all weights are penalized
toward 0, while the L2 regularization ((α/2)(1 − γ)||w||22 term) ensures smaller
weights, ensuring that we don’t overuse one feature. Notice, that the regulariza-
tions have different effects - mainly, L2 does not force weights toward 0 since if
|wi| ≤ 1, then w2

i ≤ |wi|.
Regularization helps prevent overfitting when the dimensionality is high, such as

in our case. The disadvantage of using a simple model is that the model complexity
is low (it can only fit linear functions of the signature terms), so we could easily
underfit the data as well. Luckily, however, we find this empirically is not the case.
However, we still survey more complex models as well.

3.4.2. Support Vector Machine (SVM). SVMs attempt to fit a model that maxi-
mizes the margin of the decision boundaries - the margin is the minimum distance
between a point in the dataset and the decision boundary. Otherwise, SVMs are
very similar to other classification models. For example, Figure 4 compares two
model fits with 0 empirical risk on the same dataset, but with vastly different
margins.

14 ALAN CHEN AND ALEXEY IZMAILOV

Figure 4. Comparison of small vs. large margin on the same
dataset using a halfspace decision boundary. Clearly, we prefer
the right figure. Images courtesy of DATA2060 taught at Brown
University in Spring 2023.

Because of the additional objective to maximize the margin, SVMs are useful
even in high dimensional feature spaces, in particular when the number of features
is large in comparison to the dataset size. Furthermore, the model complexity is
only limited by what function is used for the decision boundary, determined by
the kernel function of a support vector machine. There has been substantial work
deriving a signature kernel [CLX21], but for ease of implementation it is not used
here. In fact, it should be considered interesting that an unintegrated approach like
ours works so well, speaking to the power of the signature.

We use an SVM objective that is also L2 regularized with parameter C rep-
resenting the strength, where as C is inversely proportional to the regularization
strength.

3.4.3. Multilayer Perceptron (MLP). The final surveyed model is the MLP Classi-
fier, which consists of a feed-forward neural network that maps input data to a set
of appropriate outputs. Several connected layers may be used in sequence with a
non-linear activation function connecting successive layers. Two additional layers
that take in input and return outputs are used as the first and last operations in
evaluation of the neural network. Since MLPs are fully connected, each node in
one layer connects with a certain weight wij to every node in the following layer.
More concretely, a feed-forward neural network with a single hidden layer of n ∈ N
neurons defines a function uNN : Rd → R as

(3.2) uNN (x; θ) =

n∑
j=1

cjσ(x ·Wj + bj)

where d ∈ N is the fixed dimension of the input data,Wj ∈ Rd, bj ∈ R are non-linear
parameters, cj ∈ R are linear parameters, and σ : R → R is a smooth, bounded
function. The set of non-linear and linear parameters is denoted θ = {W, b, c}.

Learning consists of altering θ as the neural network is evaluated on each piece
of data. Updates are performed based on the amount of error in the output of

SIGNATURES FOR HAND KINEMATIC SYNERGIES 15

Table 2. Accuracies for the 3 surveyed models and parameters,
signature depth 4.

Model Train Accuracy Test Accuracy
ElasticNet (α = 0.1, γ = 0.5) 0.813 0.757
ElasticNet (α = 0.05, γ = 1.0) 0.812 0.757

Support Vector Machines (C = 1.5) 0.923 0.818
MLP (1 layer, 500) 0.989 0.869

the neural network compared to the expected result. This process involves a loss
function and an optimizer, where the former is oftentimes tailored to a specific
problem domain and the latter is chosen from a variety of standard algorithms.
For our application, we use the standard Adam optimizer [KB17] and utilize log-
loss (equivalently logistic or cross-entropy loss), a standard supervised learning
classification loss function.

4. Results

The accuracies for the optimal configurations of each model with signature depth
4 determined through cross validation are displayed in Table 2. We see that the
MLP, even with just one hidden layer and 500 nodes performs best, providing hope
that with more in depth analysis a powerful neural network can be trained to predict
at even higher accuracies.

Cross validation results are shown in Figure 5 for ElasticNet, Figure 6 for support
vector machines, and Figure 7 for the MLP. The results on unseen data are also
displayed in the confusion matrices in Figure 9.

There are a couple explanations for why we believe the neural network performs
better than the other models. Firstly, the model complexity is much greater in a
neural network, hinting that we could be slightly underfitting in the other models.
Secondly, we note that the neural network’s intermediate layer “softens” the model’s
compression down into one predicted label. ElasticNet and SVM have to perform a
difficult 1-step dimensionality reduction from 200 dimensions down to 1 predicted
label, while the neural network has the luxury of additional layer in the middle to
convey more information.

4.1. Cross Validation of Depth of Signature. We compare all depths of the
signature for the SVM model. We notice that despite depth 4 containing the same
information as depth 3, the accuracy is worse. Depth 3 peaks at over 0.87 testing
accuracy. However, we do not note this same performance jump in the other models
- ElasticNet performs worse on training data but the same on the testing data, while
MLP performs the same on both datasets.

Overall, these results hint that most of the information necessary to classify the
paths is actually present in a subset of the signature. As of writing, intuition on
how to select the depth of the signature is not well known or studied - it should be
tuned using cross validation.

4.2. Preprocessing Method Comparison. We also ran the same models with
preprocessing method 1. As expected, the performance is significantly worse - a
vanilla RBF kernel support vector machine is only able to achieve 0.63 testing
accuracy.

16 ALAN CHEN AND ALEXEY IZMAILOV

Figure 5. Accuracy of ElasticNet with respect to the L1 ratio
and α (regularization strength). When the L1 ratio is 1.0, we
recall that ElasticNet is equivalent to Lasso Regression.

Figure 6. Accuracy of C-support vector machine model, RBF
kernel, with respect to regularization strength. Signature depth 4.

Looking at the confusion matrices in Figure 10, we can see that the model learns
to predict stimuli 3 a lot, instead of the correct label, likely because 3 is the most
represented label in the training dataset. Taking a look at paths in Figure 3, we
can see that there are likely very similar paths (shapewise) that result from the
overlapping windows preprocessing, even though they have different labels, such as
in the flatter sections, and the model is unable to distinguish well between them.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 17

Figure 7. Accuracy of 1 layer MLP with respect to the hidden
layer size.

Figure 8. Cross validation with SVM rbf kernel with respect to
depth of signature and regularization.

4.3. Sensitivity to Additional Dimensions. As an additional experiment, we
add in two more dimensions of the path to see how the performance of the models
are affected. We restrict to just using the SVM as an example.

The two dimensions added were 2 and 20, chosen arbitrarily. The addition of
these features increases the dimension of the log-signature feature space to 728.
We use two methods to counteract the additional features: increasing strength of
regularization, and analysis of variance (ANOVA) feature selection.

18 ALAN CHEN AND ALEXEY IZMAILOV

Figure 9. Confusion matrices for test data using preprocessing
method (2) for SVM (left) and ElasticNet (right).

Figure 10. Confusion matrices using preprocessing method (1)
and SVM (left) and ElasticNet (right).

By decreasing the strength of regularization to C = 3.0, the SVM is able to
maintain a reasonable accuracies of 0.965 and 0.701 for training and testing respec-
tively, clearly completely overfit. This is likely because the current SVM objective
does not have any L1 regularization that would force sparsity in the weights.

On the other hand, by performing F distribution based feature selection prior
to a regularized SVM, we are able to improve this performance. The results are
presented in Figure 11 along with standard deviations of - clearly, we can observe
that cross validation score when we take 10% of the features easily exceeds the
model with stronger regularization.

The end goal of this style of sensitivity analysis is to find a tractable method for
avoiding manual feature selection. With the current pipeline (Figure 1), it is not
obvious how this can be done and is the greatest limitation of the current work.
Most likely, it will involve implementing ideas like the aforementioned signature
kernel.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 19

Figure 11. Accuracy of SVM + ANOVA against percentage of
features selected. Standard deviations are also included at each
percentage tested.

4.4. Comparison to Previous Work. The current state of the art in the field
is using principal component analysis such as in [Jar+19]. Unfortunately, they do
not provide accuracies on out of sample data and instead evaluate the performance
based on the explained variance of the principal components - this is a strength
of our pipeline, as we are able to explicitly display how we expect our model to
perform in the wild.

However, a limitation of this work compared to PCA is the lack of interpretabil-
ity. The principal components that arise from performing PCA are easily inter-
pretable as “synergies” between dimensions. The mathematical interpretations of
signature terms are only well understood up to depth 2 as signed areas. However,
because signatures are a relatively new method compared to PCA, we can expect
this interpretability issue to be resolved in future works.

5. Future Work

Future work includes investigating further the problem of somehow embedding
the entire 22 dimensional path. With how quickly the dimensionality increases,
robust feature selection is absolutely necessary if the entire truncated log-signature
or signature is to be used.

One possible remedy is implementing the signature kernel as aforementioned
[CLX21]. Kernel methods allow for infinite dimensional embeddings, meaning that
this semi-curse of dimensionality that we encountered would not be an issue.

All subjects analyzed in this paper were intact subjects. However, a natural
extension of this work is to amputees. Identifying the movement that an amputee
is attempting to perform is the core problem in designing prosthetics. However, a
few difficulties exist. Firstly, with amputees, you cannot use Cyberglove data since
they don’t have a hand to put the glove on - this means we must use different data,
such as sEMG data recorded from the forearm.

This data is visibly noisier and much less interpretable. Filtering can be applied,
but it is still hard to extract too much meaning (Figure 12). With how jagged the
paths are, it could be interesting to apply the signature theory with rough paths
instead of assuming nice, smooth paths like in this project.

20 ALAN CHEN AND ALEXEY IZMAILOV

Figure 12. Raw sEMG data compared with normalized sEMG
data filtered with a lowpass Butterworth filter.

Further, we note the simplicity of our currently examined models. With larger
scale models, the signature has in the past proven to be an extremely effective set of
features to use [YJL15] - we primarily confirm through a small case study that it is
meaningful to continue investigating the application of signatures to this problem.

SIGNATURES FOR HAND KINEMATIC SYNERGIES 21

6. Appendix

6.1. Code. All code used for this project is located in alizma/signatures-hand-
synergies.

https://github.com/alizma/signatures-hand-synergies
https://github.com/alizma/signatures-hand-synergies

22 ALAN CHEN AND ALEXEY IZMAILOV

References

[Ree58] Rimhak Ree. “Lie Elements and an Algebra Associated With Shuffles”.
In: Annals of Mathematics 68.2 (1958), pp. 210–220. issn: 0003486X.
url: http://www.jstor.org/stable/1970243 (visited on 04/17/2023).

[SFS98] Marco Santello, Martha Flanders, and John F. Soechting. “Postural
hand synergies for tool use”. In: The Journal of Neuroscience 18.23
(1998), pp. 10105–10115. doi: 10.1523/jneurosci.18- 23- 10105.
1998.

[HK14] Martin Hairer and David Kelly. Geometric versus non-geometric rough
paths. 2014. arXiv: 1210.6294 [math.PR].

[YJL15] Weixin Yang, Lianwen Jin, and Manfei Liu. DeepWriterID: An End-to-
end Online Text-independent Writer Identification System. 2015. arXiv:
1508.04945 [cs.CV].

[LLN16] Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past, pre-
dicting the statistics for the future, learning an evolving system. 2016.
arXiv: 1309.0260 [q-fin.ST].

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[Arr+18] Imanol Perez Arribas et al. “A signature-based machine learning model
for distinguishing bipolar disorder and borderline personality disorder”.
In: Translational Psychiatry 8.1 (Dec. 2018). doi: 10.1038/s41398-
018-0334-0. url: https://doi.org/10.1038%2Fs41398-018-0334-
0.

[Jar+19] Néstor J. Jarque-Bou et al. “Kinematic synergies of hand grasps: A
comprehensive study on a large publicly available dataset”. In: Journal
of NeuroEngineering and Rehabilitation 16.1 (2019). doi: 10.1186/
s12984-019-0536-6.

[RG20] Jeremy F. Reizenstein and Benjamin Graham. “Algorithm 1004”. In:
ACM Transactions on Mathematical Software 46.1 (2020), pp. 1–21.
doi: 10.1145/3371237.

[CLX21] Thomas Cass, Terry Lyons, and Xingcheng Xu. General Signature Ker-
nels. 2021. arXiv: 2107.00447 [math.PR].

http://www.jstor.org/stable/1970243
https://doi.org/10.1523/jneurosci.18-23-10105.1998
https://doi.org/10.1523/jneurosci.18-23-10105.1998
https://arxiv.org/abs/1210.6294
https://arxiv.org/abs/1508.04945
https://arxiv.org/abs/1309.0260
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41398-018-0334-0
https://doi.org/10.1038/s41398-018-0334-0
https://doi.org/10.1038%2Fs41398-018-0334-0
https://doi.org/10.1038%2Fs41398-018-0334-0
https://doi.org/10.1186/s12984-019-0536-6
https://doi.org/10.1186/s12984-019-0536-6
https://doi.org/10.1145/3371237
https://arxiv.org/abs/2107.00447

	1. Introduction
	2. Theory
	2.1. Notation
	2.2. Continuous Paths from Raw Sequential Data
	2.3. Path Signature
	2.4. Time Reparameterizations
	2.5. Important Identities
	2.6. Computing Signatures
	2.7. Log-Signature

	3. Experiments
	3.1. Data
	3.2. Preprocessing
	3.3. Limitations of Signatures
	3.4. Relevant Models

	4. Results
	4.1. Cross Validation of Depth of Signature
	4.2. Preprocessing Method Comparison
	4.3. Sensitivity to Additional Dimensions
	4.4. Comparison to Previous Work

	5. Future Work
	6. Appendix
	6.1. Code

	References

