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1 Introduction

In their simplest form, ordinary differential equations (ODEs) are Markovian in some sense - future
changes depend strictly on the instantaneous current state of the system. However, in climate
modeling, this is unrealistic; physical systems possess past dependencies and different components
influence each other with delayed feedback loops. Naturally, ODEs can be extended to a new class
of delay differential equations (DDEs) that simply allow the change in state to depend on the
system state at previous moments in time:

u̇(t) = f(u(t), u(t− τ1), u(t− τ2), . . . , u(t− τm)), (1)

where u ∈ Rn and each of τi for i = 1, 2, . . .m represents a specific time-delay effect or feedback
loop [5].

Clearly, time delay effects are much more realistic compared to the simple instantaneous ODEs,
especially in climate systems. As a simple example, the albedo (fraction of solar radiation reflected
by Earth’s surface) of Earth has significant implications for temperature regulation. However,
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Earth’s systems are robust and have significant “temperature inertia” i.e. changes in energy take
time before converting into measurable temperature changes, so an accurate model would need to
account for the delay of albedo impact on the change on temperature.

We present a few case studies of DDEs used in climate modeling. In section 2, we walk through
a very coarse zero-dimensional temperature example model with a time delayed albedo effect, along
with providing novel numerical perspectives that provide visual intuition to the types of unique
dynamics that can emerge in DDEs, including a stability analysis of the equilibria and numerical
solutions for various values of the time delay that uncover a supercritical Hopf bifurcation. In
section 3, we switch gears to models of specific climate systems, in particular the El Niño Southern
Oscillation (ENSO). We discuss a brief history of how modeling ENSO has changed over the years
and again study the steady states and their respective stabilities in fundamental models. We also
visualize numerical solutions. Throughout the report, we rely heavily on visual and numerical
intuition and keep the calculations light as the theoretical grunt work has already been outlined in
the literature.

2 Energy Balance Temperature Model with Time Delayed
Albedo Effect

In [1], Andersson and Lundberg propose a zero-dimensional1 energy balance effect model of
globally averaged temperature T : R → R (in Kelvins). In particular, they consider a compartment-
esque model with a time-delayed albedo term that impacts the absorbed energy:

C1Ṫ = Q0(1− α(T (t− τ)) )︸ ︷︷ ︸
incoming absorbed energy

− σg(T )T 4︸ ︷︷ ︸
outgoing emitted energy

, (2)

where C1 > 0, Q0, σ, and g are the globally averaged heat capacity, mean solar radiative input,
Boltzmann constant, and the effective emissivity coefficient as a function of T , respectively. The
albedo effect, α, is defined piecewise as

α(T ) =


0.85 T ≤ 216

2.798− 0.009T 216 < T < 283−B

2.798− 0.009T +A
(
1− cos

(
2π(T−283−B)

B

))
283−B ≤ T < 283

0.25 283 ≤ T

. (3)

and g(T ) = 1 − m tanh((T/T0)
6) where m = 0.5 and T0 = 284.15 K. We refer readers interested

in discussion of the explicit values of the other constants, their derivations, and overall physical
motivation of the terms to [1]. The particular motivation for the albedo delay is simple: the model
can now account for the imbalance between the slow buildup yet fast melting of ice volume and the
empirically observed delay between global temperature changes and ice volume.2

The beauty of this system is its simplicity (it is really only one dimension!) that nevertheless
yields interesting dynamics once we permit τ > 0. Before we dive into the analysis, we review a
method of stability analysis for ODEs in order to extend it to DDEs.

1“zero-dimensional” refers to zero spatial dimensions.
2It is estimated the true delay is between 103 and 104 years.
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Figure 1: (Replication of figure 1 in [1]): Comparison of incoming absorbed energy term (blue) and
outgoing emitted energy term (orange) for various values of T (both are evaluated at the same T ).
We note 5 equilibria (where Ṫ = 0).

2.1 Interlude: Exponential Perturbation Stability Analysis

Consider the ODE system
u̇ = f(u), u ∈ Rn. (4)

Our general approach to analyzing the stability of equilibria in eq. 4 has been to

1. find the equilibria by solving f(u) = 0,

2. linearize the system around equilibria points u∗,

3. and look at the sign on the real part of the eigenvalues of the Jacobian matrix.

Unfortunately, extending this approach to DDEs is not clear because of the additional delay term.
Instead, we present an analogous approach to analyze stability of equilibria that is equivalent in
the finite dimensional case but extends itself more easily to the DDE case.

Intuitively, we will analyze small exponential perturbations around equilibrium points. Let u∗ be
an equilibrium of eq. 4 and consider a solution of the form

u(t) = u∗ + v(t) (5)

where ∥v(t)∥ ≪ 1 models a small perturbation around the equilibrium u∗. Then, through substi-
tution into a linearized form of eq. 4, we find that

v̇(t) = Jf (u
∗)v, (6)

where Jf (u
∗) is the Jacobian of f evaluated at u∗. This results in v taking the form v(t) = v0e

λt,
where v0 is an eigenvector of Jf (u

∗) and λ is the corresponding eigenvalue. Then, we can analyze
the limiting behavior of v based on the sign of the real component in λ, which we observe recovers
exactly the original finite-dimensional approach.
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However, this perturbation perspective extends much more directly to analyzing eq. 1. First,
we naturally define the equilibria of the system by finding u∗ such that

f(u∗, u∗, . . . , u∗︸ ︷︷ ︸
m times

) = 0. (7)

This essentially is assuming that the initial “window” of the solution is all constant at u∗. For
clarity, we now only consider m = 1 since 2 only has m = 1; the results extend trivially to m > 1.
Using the same solution as eq. 5, we can find that

v̇(t) = Av(t) +Bv(t− τ) (8)

where

A =
∂f

∂u1
(u∗, u∗) (9)

B =
∂f

∂u2
(u∗, u∗) (10)

are both square n× n matrices. The same solution form appears as v(t) = v0e
λt. This gives that

d

dt

(
v0e

λt
)
= Av0e

λt +Bv0e
λ(t−τ1) (11)

λv0 = (A+Be−λτ1)v0. (12)

Because of the delay, we have now picked up an additional e−λτ1 term that transforms a sim-
ple eigenvalue-eigenvector problem in the finite dimensional case into solving the characteristic
equation

det
(
A+Be−λτ1 − λI

)
= 0 (13)

for λ. In general, this is not possible to solve explicitly. We will see in a moment that even in
1D the characteristic equation is implicit and transcendental. However, the rest of the analysis is
identical - because of the nature of v, the real part of λ once again governs the growth rate of the
solution.

When n = 1, this equation reduces to just

a+ be−λτ1 − λ = 0 (14)

where a and b are now scalars.

Lemma 1. Assume n = 1. Then, c = Re(λ) and d = Im(λ) solve

c = a+ be−cτ1 cos(dτ1) (15)

d = −be−cτ1 sin(dτ1). (16)

To allow these transcendental equations to be solved stably numerically using the constants at hand,
we let x = cτ1 and y = dτ1 so that

x = aτ1 + bτ1e
−x cos(y)

y = −bτ1e
−x sin(y).
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Proof. This lemma can be derived strictly from expanding λ as c + di so that c = Re(λ) and
d = Im(λ). Substituting for λ in the characteristic equation shows

a+ be−cτ1−dτ1i = c+ di

a+ be−cτ1(cos(−dτ1) + i sin(−dτ1)) = c+ di

so that matching the real coefficients and the imaginary coefficients gives, as desired,

c = a+ be−cτ1 cos(dτ1)

d = −be−cτ1 sin(dτ1)

where we used that cos is even and sin is odd to clean up the expression.

2.2 Stability Analysis of Eq. 2

In the general τ ≥ 0 case, we can numerically find the equilibria of eq. 2 T ∗
i for i = 1, 2, . . . , 5:

T ∗ = [175.64, 260.82, 274.24, 277.84, 302.69]. (17)

Immediately note that when τ = 0, the equilibria and stability are easily visible from figure 1,
which plots the incoming absorbed energy and the outgoing emitted energy for various values of T .
The intersection points are the equilibria and the stability is governed by the sign of Ṫ on either
side of the equilibria. In particular, we see that T ∗

1 , T
∗
3 , and T ∗

5 are stable while T ∗
2 and T ∗

4 are
unstable. We use this as a sanity check of our general τ numerical methods.

Returning back to the general system, we can derive the functional forms of a and b from the
functional forms of g and α respectively. For an equilibrium T ∗

i , using the product rule, chain rule,
and a derivatives table, we can find

a = −σC−1
1

(
−3(T ∗

i )
9 cosh−2((T ∗

i /T0)
6)

T 6
0

+ 4(T ∗
i )

3g(T ∗
i )

)
b = −Q0C

−1
1 α′(T ∗

i )

where

α′(T ) =


0 T ≤ 216

−0.009 216 < T < 283−B

−0.009 + 2πA
B sin

(
2π(T−283−B)

B

)
283−B ≤ T < 283

0 283 ≤ T

.

Although there are theoretical stability criteria that can be used to analyze the real part of the
solutions (c) to the equations in Lemma 1 (see [4]), we present a purely numerical perspective as
visual intuition.

Let sign : R → {−1, 1} denote the sign function that maps all negative reals to −1 and all
nonnegative reals to 1. In fig. 2, we plot sign(c) for various time delays between 0 and 4 × 1010

seconds. The equilibrium is stable when sign(c) = −1 and unstable when sign(c) = 1.
We observe that T ∗

1 and T ∗
5 are unconditionally (on τ) stable and T ∗

2 and T ∗
4 are unconditionally

(on τ) unstable. However, T ∗
3 exhibits a supercritical Hopf bifurcation, as a periodic orbit emerges

as a result of two eigenvalues passing over the imaginary axis at the same time when τ surpasses
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Figure 2: sign(Re(c)) for various values of τ . Equilibrium 1 and 5 are unconditionally stable for all
τ where as equilibrium 2 and 4 are unconditionally unstable. Equilibrium 3 undergoes a bifurcation
where it flips from stable to unstable after a critical delay τc. The plots are linearly interpolated.

Figure 3: We plot the solutions to the characteristic equation around T ∗
3 . We can see two roots

pass across the imaginary axis simultaneously as τ increases.
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a critical value τc ∈ [1010, 2 × 1010] (the true value of τc ≈ 1.02 × 1010s or about 325 years.). The
bifurcation is supercritical because the equilibrium goes from being stable to unstable.

In other words, there exists a critical delay of the albedo effects around 300 years that transitions
the system from stable at T ∗

3 to unstable - the nature of the bifurcation is clear once visualizing
the solutions for various values of τ around T ∗

3 in fig. 3. It is surprising that interesting structure
could emerge in such a simple model.

2.3 Numerical Solution

Following [1], we can numerically solve the equation by mildly adapting the RK4 method to forward
step through time while accounting for the new delay term. The RK4 steps are shown below,
with the additional delay modification underlined and h = τ/ds as the step size, where d is some
hyperparameter representing the number of discretized steps that are equivalent to a “lookback”
of τ s. Letting Ti denote the discretized solution at step i (equivalent of ih seconds),

k1 = f(Tn, Tn−d)

k2 = f(Tn + hk1/2, Tn−d)

k3 = f(Tn + hk2/2, Tn−d)

k4 = f(Tn + hk3, Tn−d)

Tn+1 = Tn +
h

6
(k1 + 2k2 + 2k3 + k4).

For numerical stability, we generate the solution C1T before scaling back down to just get T . We
specify a constant initial window of size τ and plot the resulting solution for various values of τ in
fig. 4. We start all trials at a small perturbation around T ∗

3 because the other equilibria do not
have any interesting behavior.

Once the length of the feedback loop surpasses the critical τ , we observe an unstable periodic or-
bit bifurcate from an originally asymptotically stable system, as expected from a supercritical Hopf
bifurcation. Furthermore, the system continues undergoing a series of period doubling bifurcations
as τ increases before becoming essentially chaotic (fig. 5).

The physical significance of T ∗
3 likely lies in that 274.24 is around 1 degree C, or right above the

freezing point of water. If globally averaged temperatures are near this point, it has implications for
the water cycle and if ice volume is expanding or shrinking. We have shown that longer delay in the
albedo term introduces instability around this point, resulting in periodic oscillations that bounce
around but are never that large in magnitude (to where they dip below 0 degrees C). Overall, the
physical meaning of this equilibrium offers some vague understanding as to why this steady state
exhibits special behavior compared to the unconditional behavior of the others.

3 Models of El Niño Southern Oscillation

We now turn to a different application of DDEs.
One of the most active climate phenomena on Earth is the El Niño Southern Oscillation (here-

after ENSO), which affects the tropical regions of the Pacific Ocean. This oscillation has two phases:
El Niño, associated with higher temperatures and precipitation in the East near South America,
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Figure 4: We simulate solutions with initial conditions near T ∗
3 for various τ . For τ ≥ τc, a periodic

orbit emerges, and the period lengthens through period doubling bifurcations as τ continues to
increase.

Figure 5: For τ = 1011 seconds, after a cascade of period doubling bifurcations, the dynamics of
the zero dimensional system appear to be essentially chaotic.
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and La Niña, associated with higher temperatures and precipitation in the West near Australia and
South America. These cycles occur ever 2-7 years, but are difficult to predict with precision.

ENSO is primarily driven by the Bjerknes feedback, where a warming of the Eastern Pacific
waters weakens the strength of the east-to-west trade winds in the atmosphere, which slows the
upwelling of cold water from the depths of the Eastern Pacific ocean, which keeps the surface waters
warm, and so on, causing the strong El Niño effect.

Bjerknes proposed this feedback in 1969 [2], and is considered to be a founding figure in the
study of ENSO dynamics.

3.1 History of models

Twenty years following Bjerknes’ groundbreaking paper, Suarez and Schopf [6] proposed a mecha-
nism to limit Bjerknes’ positive feedback loop, ensuring that eventually the ocean state returns to
equilibrium. Specifically considering the Sea Surface Temperature (hereafter SST) anomalies, they
started with the simple Ordinary Differential Equation:

Ṫ = kT︸︷︷︸
SST anomaly growth

− bT 3︸︷︷︸
nonlinear effects on SST anomaly

(18)

This can be simplified by scaling time by k−1 and T by (k/b)1/2 to remove the coefficients.
Suarez and Schopf’s argument claimed that Rossby waves propagated on the ocean thermocline

from the warming region in the east, towards the western boundary, and then reflected back towards
the east as Kelvin waves, cooling the basin back to normal once they arrived. In this process, the
”signal” of the SST anomaly was reentered after some time delay for these waves to cross the Pacific
Ocean and return. Thus, describing this mechanism necessitated a Delay Differential Equation:

Ṫ = T − T 3︸ ︷︷ ︸
scaled ODE

−αT (t− τ)︸ ︷︷ ︸
delay term

(19)

Five years later, Tziperman et al. [7] expanded on eq. 19 in several ways. First, they quantified
the delay by the speeds of the Rossby Wave and Kelvin Wave (CR and CK), and the width of the
basin, i.e. the length the waves must travel before being reflected (L). Second, they wrote their
equation in terms of the Thermocline Depth anomaly h(t) instead, which is still closely related to
the SST anomaly. Third, they added an idealized seasonal forcing, with frequency ωa. Combining
these modifications leaves a complicated DDE:

ḣ(t) = αA

(
h

{
t−

[
L

2CK

]})
− βA

(
h

{
t−

[
L

CK
+

L

2CR

]})
+ γ cos (ωa(t)) . (20)

In 2008, Ghil et al. [3] considered the dynamics of a simplified version of 20. They condensed
the two-delay model to one delay τ , and defined A(x) = tanh(x), resulting in the cleaner

ḣ(t) = −α tanh(κh(t− τ))︸ ︷︷ ︸
Delay term

+ βcos(2π ω t)︸ ︷︷ ︸
Seasonal forcing

(21)

3.2 Stability Analysis of Eq. 19

Here we consider the stability of Suarez and Schopf’s simplistic DDE in eq. 19. Based on the
assumptions that the delayed wave dampens the current ENSO phase, we assume α > 0, and based
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on the expectation that the delayed wave has lost some information via dissipation in transit and
imperfect reflections, we assume ∥α∥ < 1.

First, we calculate the steady states by following the equilibrium definition in eq. 7.

0 = T − T 3 − αT

0 = T (1− T 2 − α)

We notice that this implies T = 0 or that T 2 = 1− α. Thus, we can conclude that

T = 0,±
√
1− α

are the steady states of our system.
Let’s assume T ̸= 0. Next we represent perturbations as T (t) = T0 + T ′(t), and substitute:

Ṫ ′(t) = (T0 + T ′)− (T0 + T ′)3 − α(T0 + T ′)(t− τ)

= T0 + T ′ − T 3
0 − 3T 2

0 T
′ − 3T0T

′2 − T ′3 − αT0(t− τ)− αT ′(t− τ)

≈ (T0 − T 3
0 − αT0(t− τ)) + T ′ − 3T 2

0 T
′ − (3T0T

′2 − T ′3)− αT ′(t− τ).

Now, recalling that T0 is a steady state of the DDE, we can collapse the collected terms down into
just a function of T ′:

≈ 0 + T ′ − 3T 2
0 T

′ − 0− αT ′(t− τ)

= T ′(1− 3T 2
0 )− αT ′(t− τ)

= T ′(1− 3(1− α))− αT ′(t− τ)

= (3α− 2)T ′ − αT ′(t− τ).

At this point, we also assume that the first coefficient is greater than the second, and therefore

3α− 2 > −α =⇒ 4α > 2 =⇒ α >
1

2
.

Thus, this restricts us to α ∈ ( 12 , 1).
Now, as before in the zero dimensional stability analysis, let us assume a solution for the

perturbation of the form T ′(t) = Teσt, and substitute. We first seek neutral stability curves, where
if σ = σr + iσi, then σr = 0.

Teσt · σ = (3α− 2)Teσt − αTeσ(t−τ)

σ = (3α− 2)− αe−στ .

Using our assumption that σr = 0 so that σ = iσi, we have that

iσi = (3α− 2)− αe−iσiτ

iσi = (3α− 2)− α(cos(σiτ)− i sin(σiτ)).

First, matching the coefficients of the real part gives

0 = 3α− 2− α cos(σiτ)

cos(σiτ) =
3α− 2

α
=⇒ τ =

arccos 3α−2
α

σi
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Figure 6: Neutral Stability Curve for eq. 19 with τ ∈ (0, 10) on the x axis, α ∈ (0.5, 1) on the y
axis.

Matching the imaginary coefficients takes some more work.

iσi = αi sin(σiτ)

sin(σiτ) =
σi

α

Using the identity that sin2(x) + cos2(x) = 1 for all x ∈ R, we can combine the expression we have
for sin(σiτ) and the above formula we found for cos(σiτ) to write that

sin2(σiτ) + cos2(σiτ) = 1(σi

α

)2

+

(
3α− 2

α

)2

= 1

σ2
i + (3α− 2)2 = α2

σ2
i = α2 − (3α− 2)2

σi =
√

α2 − (3α− 2)2

So, the neutral stability curve is:

τ =
arccos

(
3α−2

α

)√
α2 − (3α− 2)2

The neutral stability curve is plotted in fig. 6. It is not difficult to see that cases starting below
this curve are stable while cases starting above this curve are unstable.
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Figure 7: Solutions to eq. 22 for various κ, τ

3.3 Numerical Analysis of Eq. 21

Here we consider numerical solutions of Ghil et al.’s DDE with seasonal forcing 21.
We begin by rescaling h(t), thus letting α, β, ω = 1. To solve h(t) for t > 0, we must be able to

define h(t− τ). Therefore, we must prescribe some initial state h(t) = ϕ(t) for t ∈ [−τ, 0]. Here we
set ϕ(t) := 1. These choices transform our equation to:{

ḣ(t) = − tanh(κh(t− τ)) + cos(2πt) for t ≥ 0

h(t) = 1 for t ∈ [−τ, 0]
(22)

We select the parameter values κ = 5, 50, 500 and τ = 0.65, 0.58, 0.508, 0.42, 0.005, which model
several different real-world phenomena. (Note that axes are scaled differently, for readability and
comparison of shapes.)

• κ ≥ 50, τ = 0.65 represent no anomalies.

• κ = 5, τ = 0.65 represents regular El Niño and La Niña phases.

• τ = 0.58 represent anomalies in La Niña; especially for κ = 500, these are irregularly timed.

• κ ≥ 50, τ = 0.508 represent long-term variability in addition to short-term phases.

• κ ≥ 50, τ = 0.42 are arguably closest to what we experience: irregular pulses of El Niño and
La Niña phases

• κ = 500, τ = 0.005 represent bursts of intra-seasonal activity, potentially Madden-Julian
oscillations.

12



4 Concluding thoughts

In this report, we explored the stability of steady states of DDEs in climate modeling, in particular
general temperature systems influenced by delayed albedo effects and systems capturing the dy-
namics of the El Niño Southern Oscillation (ENSO). We described a perturbation-based framework
for analyzing the stability of steady states and through basic algebra are able to uncover unique
behaviors that we emphasize visually.

DDEs are exciting because they expand the expressiveness of climate models while not signifi-
cantly increasing the complexity of the calculations or theoretical analysis. Despite the simplicity
of adding time delays, it is clear that nontrivial and intricate dynamics emerge because of delayed
feedback loops, such as the delayed albedo effect introducing bifurcations and chaotic dynamics
into the global temperature model. DDE-based approaches will likely prove invaluable for captur-
ing a greater portion of empirical climate observations and deeply understanding the complicated
dynamics underlying climate change and phenomenon.
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