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Summary

With the rise of global warming, in the late-20th and 21st centuries, it has become readily apparent that
the impact of human activity will affect previously longstanding ecosystems greatly in the short term. Per
ecosystem, perhaps the single most important trophic level on the foodchain is the plant fauna, however,
these are likewise the most susceptible organisms to even small-scale perturbations in precipitation,
weather, and pollution patterns. In order to combat this, we aim to develop a greater understanding of
factors driving plant evolution, with particular interest in symbiotic inter-population behavior and drought
adaptability.

To accomplish this, we formulate a system of ordinary differential equations and time-dependent partial
differential equations to simulate population dynamics over a specified domain. Specifically, we evolve
plant populations through time via the competitive Lotka-Volterra equations and simulate population
diffusion through time via a system of coupled Fisher-KPP equations.

These differential equations are coupled with several biologically-inspired environment models which
simulate extreme weather events, the diffusion of precipitation throughout the domain, several kinds of
pollution effects, and geographical features that determine a dynamic world with resources affecting plant
growth. To simulate this world, we develop a numerical scheme on various evolution scenarios that are
evaluated through a combination of adaptive time-stepping schemes (RK45), finite difference methods,
and method of lines solvers. Some of these are implemented in py-pde and sci-py, but we developed
our own heat equation solver as well.

This approach gives us the freedom to then model extreme environmental scenarios such as polluti on
and irregular droughts by developing scaling transforms applied to the raw quantities of resources.

We quantify biodiversity using the Hill numbers and analyze their relationship with the number of
species in the system. We discover an increase in biodiversity when the number of species is around 5 or
6, especially if there are a large quantity of droughts with medium to high severity. Through additional
case studies and ablation tests, we verify the biological and theoretical robustness of our system, where
we discover its ability to model unique types of species, agree with theoretical equilibria, and account for
pollutants. Finally, we propose a data-inspired scheme for ensuring long-term plant viability.

Keywords: Competitive Lotka-Volterra, Fisher-KPP, Finite Differences, Interspecies Population Dynam-
ics, Extreme Precipitation Events, Simulation
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1 Introduction
We are interested in the development of a high fidelity, generalizable model of the large-scale ecological

behavior of several interacting plant species. Globally, plant biomass dwarfs mammals – despite the
impossibility of a sharp estimate, the numbers of trees alone on the planet is estimated to be in the trillions
[Ehr15]. In light of global trends with respect to global warming and pollution, ecologically “rare events”
occur with increasing frequency; in particular, the rise in average global temperatures comes coupled
with an increase in heat-waves and extreme-precipitation phenomena (inclusive of both drought-like and
monsoon-like)1, both to which the planet’s plant life will largely be vulnerable, though individually to
widely varying degrees.

In lieu of counteracting global warming processes, we would like to investigate what can be done
locally to preserve plant life, especially in regard to drought resilience; we conflate a success here with
implications for success in preserving the long term resilience of ecosystems in their entirety in the face
of global warming. This can be broken into the following components:

1. How many different plant species are required to achieve this effect of collective benefit, and how
do the types of species matter?

2. What happens when extreme precipitation events become more frequent and severe?

3. How do other factors like pollution and habitat reduction impact the model?

4. What does the model imply can be done to ensure the long term well being and viability of the plant
communities?

We chose to approach this problem with a focus on modeling dynamics between species through running
numerical simulation. The analysis portion of this paper conducts multiple case studies, each varying
different parameters of the model to see what changes in the simulations. Our framework is generalizable
and provides a healthy amount of flexibility to simulate unique environments and interactions between
species with high fidelity.

2 Global Assumptions
We make various assumptions and provide justification. Many of them are the cruxes of multiple

points in our model. We also make implicit assumptions specific to the various subroutines, so here we
only mention the explicit and global ones for conciseness and postpone discussion of specific assumptions
to their respective sections.

1. Up to small diffusive constants , an arbitrary domain Ω can be represented sufficiently with a
unit square ⊂ R2.
Importantly, this allows us to greatly simplify the computation and parameterization of the meteo-
rological and diffusive processes we want to simulate. In theory, modeling these as close to a real
world understanding would also involve the prescription of a smooth surface ⊂ R3 and gradient
computations along this manifold, but we shortcut this through this assumption. Generating terrains
algorithmically is not feasible, so we would admit a hit to generalizability in doing so.

1https://www.c2es.org/content/heat-waves-and-climate-change/

https://www.c2es.org/content/heat-waves-and-climate-change/
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2. Plants only consume water and nutrients from the soil.
We assume it will be sufficient to only consider 2 resources under the geometric assumption. This
prevents cluttering of the model with additional features, and allows us also to reduce concerns over
the curse of dimensionality. Physically, the most notable loss is with respect to a plant species’s
consumption of light and dependence on 3d space to grow.

3. Environmental effects from outside Ω ⊂ R2 are negligible in net against the effects explicitly
imposed on the interior.
We leverage this assumption to consider only the dissipation of internal resources into the outside
environment, but can avoid worrying about inflow of resources.

4. All quantities can be taken as non-dimensionalized at simulation time.
By a dimensionless quantity, we mean a quantity that has not been assigned units of physical
measurement.
Again in light of the first assumption, this is less of an assumption and more of a modeling decision
to save the time and effort of computing transformations to remove the dimensions (since we need
dimensionless variables to apply the differential equations). In a sense, we can capture greater
generalizability to differing scales by not imposing model decisions onto a particular scale.
The primary dimensionless quantities of interest are the population densities (interpreted as plant
biomasses), time, the two resource quantities, and relevant derivatives.

5. The time scale is sufficently small such that the effects of generational evolution are negligible.
Evolutionary dynamics is difficult to reasonably model in the continuum case. We provide a model
framework in which evolutionary dynamics theoretically could be added, but they are not included
in our implementations for fear of needing to overtune simulations in addition to time and compute
constraints. Instead, we prioritize modeling intergenerational effects.

6. Population growth can be modelled logistically.
We base one of our main dynamics (competitive Lotka-Volterra) on this assumption. See subsec-
tion 3.1 for a more in depth discussion.

7. There are no inter-plant predatory interactions, only competitive interactions.
This again is an assumption that supports the validity of using the Competitive Lotka-Volterra
equations.

3 Forward Problem Methodology
As a brief overview, we include a rough schematic of how the forward solver is pieced together in

Figure 1.

3.1 Modelling Population Dynamics
Real populations do not exist in isolation but undergo inter-species competition, parasitism, mutualism,

and other ecological interactions. For instance, as irrigation and nutrients in Ω are limited and subject to
dramatic changes due to external influences, plant populations are naturally competing for survival. As
the competitive exclusion principle states that two species competing for limited resources cannot co-exist
at constant population values, we require a model of population dynamics.
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Figure 1: Flowchart of the forward methodology. The outer loop is run every timestep.

3.1.1 Competitive Lotka-Volterra Equations

Population models contain four critical demogrpahic processes of death, birth, immigration, and migration,
which are all captured under Malthus’ population principle of growth and represented mathematically in
the logistic equation. As such, the base population model for competition is that of logistic population
changes in time with terms that account for inter-species interactions. Explicitly, for N competing plant
species the competitive Lotka-Volterra equations read

dxi

dt
= rixi

(
1−

∑N
j=1 αijxj

Ki

)
(1)

where xi is the population of species i ∈ {1, 2, . . . N}, αi,j ≥ 0 represents the influence that species
j has on species i, Ki describes the carrying capacity for species i, ri describes the inherent per-capita
growth rate, and t is time. By convention, self-interactions are represented by the condition αii = 1.
As all species are modelled as competing, each αij represents an antagonistic interspecies effect with the
severity determined by magnitude: αij ≈ 1 corresponds to a significant competitive effect while αij = 0
represents no interaction.

The population counts, growth rates, and carrying capacities are considered as vectors while the αij

terms determine a matrix. To ensure that our model represents the behavior of a non-chaotic system,
we restrict possible species collections with {αij}1≤i,j≤N having all positive eigenvalues, a necessary
condition for stability [AG04]. Thus, to initialize multi-species systems with varying interspecies effects,
we require a method for constructing random symmetric positive definite matrices with unit diagonals,
and all elements between [0, 1]. This is accomplished by computing α = XXT where random unit vectors
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comprise the rows of X (to see why these properties are guaranteed, one can prove it by definition of
matrix multiplication and a quick invocation of the Cauchy Schwarz inequality).

While the competitive Lotka-Volterra equations represent population dynamics through time, we are
also interested in the spatial propagation of species throughout Ω. To model this process, we couple the
above with a reaction-diffusion equation.

3.1.2 Fisher Kolmogorov-Petrovsky-Piskunov (KPP) Equation

To model the species’ diffusion throughout the domain Ω, we leverage the Fisher-KPP equation, a reaction-
diffusion PDE that models population growth. Let 0 ≤ ui(x, t) ≤ 1 quantify the population density of
species i. In 2D, the equation reads

∂tui − µi∆ui = ρiui

(
1− ui

Ki

)
(2)

where µi > 0 is the diffusivity coefficient, ρi > 0 is the growth rate, and Ki > 0 is the carrying capacity
of the habitat for species i. We specify this equation for each species and subject the resulting system of
PDE to the continuity condition

n∑
i=1

ui(x, t) = 1, (3)

which ensures that each species is represented point-wise.

The dimensional variables are non-dimensionalized by the transformations τi = t/ρ−1
i , ξi = x/

√
µi/ρi,

and υi = ui/Ki where ρ−1
i ,
√

µi/ρi and Ki are the time, length, and population scales for species i, re-
spectively. In the dimensionless form, υi(ξi, 0) = (υi)0(ξi) ∈ [0, 1] for ξi ∈ Ω̃i as it is the ratio of the initial
population to the carrying capacity. Here, Ω̃i is the non-dimensionalized domain over which diffusion of
species i occurs. As such, Equation 2 has the dimensionless form

∂τiυi −∆υi = υi(1− υi), ξi ∈ Ω̃i, τi ≥ 0. (4)

The Fisher equation is posed with no-flux conditions at infinity limξi→±∞(υi)ξi = 0. As the non-
linearity presents a considerable numerical challenge, we linearize the PDE around υi(ξi, 0) = 0 by setting
υi(ξi, τi) = εωi(ξi, τi) for 0 < ε ≪ 1. This assumption implies a space equilibrium solution that satisfies
the desired no-flux boundary conditions assuming the value of ωi is small. Substituting, the resulting PDE
is of the form ε(ωi)τi − ε∆ωi = εωi − (εωi)

2, which simplifies further to

(ωi)τi −∆ωi = ωi (5)

when preserving terms of order O(ε). When this linearization is valid for small ωi, the system is expected
to attain a quasi-steady-state throughout the simulated domain. While several involved numerical schemes
exist for this PDE, this linearization allows us to implement a simpler numerical scheme while implicitly
assuming that each individual population has a small population density. We now discuss our approach to
simulating resources in the environment, starting water.

3.2 Simulating Water
Our model accounts for the dynamics of 2 different sources of water: precipitation and large bodies of

water. Modeling precipitation can be broken down into two stages: rainfall events (see subsubsection 3.2.1)
and the diffusion of rainwater post-rainfall (see subsubsection 3.2.2).

3.2.1 Precipitation Events

We model precipitation events as a collection of spatially and time increment-dependent Poisson dis-
tributions with magnitudes independently and identically distributed (iid) according to another spatially
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dependent Gamma distribution, mostly following [DNO18]. Formally, for each location (i, j) in Ω, let
Ni,j(∆t) denote the number of precipitation events that occur in a time increment of ∆t and assume that
each event that occurs has a magnitude distributed according to a Gamma distribution. The probability
mass function of Ni,j(∆t) is by definition

P(Ni,j(∆t) = n) = e−λi,j(∆t)λi,j(∆t)n

n!
, (6)

and the total precipitation at the (i, j) location in a timestep of size ∆t Pi,j(∆t) is simply the sum

Pi,j(∆t) =

Ni,j(∆t)∑
k=1

Yi, Yi ∼ Gamma(ki,j, θi,j). (7)

One of the key properties of this model is that it captures days with no rainfall quite naturally - indeed,
plugging in n = 0 to the above Poisson distribution gives

P(Ni,j(∆t) = n) = e−λi,j(∆t)λi,j(∆t)0

0!
= e−λi,j(∆t) > 0. (8)

Further, it follows that λi,j(∆t) has an easy physical interpretation, as E[Ni,j(t)] = λi,j(∆t) - it is simply
the number of precipitation events we expect to occur on a timestep of size ∆t at location (i, j). To stay
simple, λi,j(∆t) scales linearly with respect to ∆t. A hyperparameter representing the frequency fi,j of
precipitation events is provided and then we simply compute λi,j(∆t) = fi,j ·∆t.

This Poisson-Gamma approach provides an incredible amount of flexibility - the frequency matrix can
be initialized in any manner and can even be a function of time, just like the parameters of the Gamma
distribution. In particular, we can specify wetter and drier regions of Ω freely as the effect is internalized
within this subroutine. One approach to simulating drought or abundance of precipitation events would
just involve tweaking λi,j for all (i, j) in some subdomain of Ω. We do not settle on this approach of
modeling for various reasons (mostly numerical stability, see subsubsection 3.4.4), but it provides a strong
physical justification and rooting for this submodule.

3.2.2 Precipitation Diffusion

Following precipitation, our model should account for the remaining components of the water cycle; in
particular, the additional water resultant from precipitation should diffuse through the domain and, in some
sense, by retained by the ground until eventually it is reduced through evapotranspiration. The 2d heat
equation provides a natural avenue for capturing this behavior:

ut = α∆u = α (uxx + uyy) , (9)

where in this case u : Ω× R → R represents the amount of rainwater at each location and ∆ denotes the
Laplacian operator. We numerically approximate a solution on Ω using a standard finite difference method
approach detailed briefly in section 4.

Two example runs of combining the subroutines in subsubsection 3.2.1 and subsubsection 3.2.2 for
different values of λi,j are displayed in Figure 2a. To give visual intuition of a continuous time progression
of the realization, one can imagine the grid “twinkling" or “sparkling."

3.2.3 Bodies of Water

To model bodies of water, we introduce “point sources" into the landscape that constantly supply water.
These point sources behave as literally just an additive factor, except in the presence of drought events. To
represent an approximation “diffusion" of this constant source, we model the impact area of the body of
water as a 2D Gaussian. Mathematically, we discretize the function

z(x, y) = Ae[(x−x0)2+(y−y0)2]/σ2

+ ϵ, (10)
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(a) Precipitation example runs for 100
timesteps, ∆t = 0.01, and two different λi,j

values (as an example constant for all i, j).

(b) Example of an interpolated nontrivial landscape
and its results.

Figure 2: Water Simulation Examples

Figure 3: Example generation of bodies of water.

where A, σ, and (x0, y0) are randomly generated and represent the scaling magnitude, effective radius,
and center location respectively. ϵ is a small constant so that the discretization appears a bit nicer.

Visually, an example manifestation of bodies of water is displayed in Figure 3.

3.3 Simulating Nutrients
We model the grid of available nutrients in a much simpler manner because of the assumption that the

movement of nutrients is negligible. Our physical motivation is that we want the amount of nutrients to
grow faster in some locations compared to others and otherwise asymptotically approach the maximum
amount of nutrients that could be held at each location.

Thus, quite naturally, we attach a logistic growth model Yi,j : R → R representing to units of nutrients
available to each index (i, j):

Yi,j(x) =
MN,i,j

1 + e−σi,jx
, (11)

where MN,i,j is the maximum amount of nutrients that can exist in this location of soil and σi,j > 0 is
a scale parameter representing how fast the logistic growth is. We restrict to positive σi,j so that Yi,j is
monotonically increasing.

x is some “location" that lives along an abstract real line that we will traverse over during iteration -
we stress that there is little physical intuition to be had about values of x. Implementation wise, we need
to support two operations: moving forward some time step ∆t and growing nutrients, and updating the
current location given some changes in the values due to other factors in the system such as consumption.

For the former, we keep it simple and simply move from x 7→ x + ∆t. We emphasize that the
reader should not take this to mean x can be interpreted as time, as this interpretation falls apart when
implementing the latter operation.

The latter operation can be formulated as the problem: given some new state value y′, what value of x
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Figure 4: Example of nutrient growth, initialized with all values at 0.5.

are we at? We answer this by inverting Yi,j(x), which can be easily computed with some algebra as:

Y −1
i,j (y) =

1

σi,j

log
y

MN,i,j − y
. (12)

So given some new state value y′, we update our x 7→ Y −1
i,j (y′). Clearly, this can and almost always will

be a shift to the left (since the changes come from consumption), so interpreting x as time is not correct.
An example is displayed in Figure 4.

3.4 End to End Simulation
We aggregate all of these previous computations and subroutines into formulating a notion of localized

carrying capacity.

3.4.1 Carrying Capacity - Water + Nutrients

We consider two types of carrying capacities: Soil Water Carrying Capacity for Vegetation (SWCCV) and
Soil Nutrient Carrying Capacity for Vegetation (SNCCV). For our model, we wanted two key properties
of carrying capacity: (1) it must be species specific and (2) it must depend both on space and time. We
investigate SWCCV first and define SNCCV in the same manner.

One of the most popular models used to determine SWCCV is the water balance equation. This
is a simple compartment model that represents the inflow and outflow into a particular location on Ω.
Assuming everything in the following equation is i, j indexed on the square mesh of Ω, we can model
W (t), the surplus of water units at (i, j) at time t, as

W (t+∆t) = W (t) + P (∆t)− E(∆t, kt)−R(∆t), (13)

where P is the precipitation as computed in subsubsection 3.2.1, E encapsulates all forms of evapotran-
spiration which is a function of the population kt, and R is runoff. R depends on the Plant Available Water
Holding Capacity (PAWHC) denoting the maximum amount of units of water this location of soil can
hold onto. Operating under our assumptions (namely assumption 1), accounting for runoff is as simple
as elementwise minimizing W (t) with a matrix denoting the PAWHC at each point in the domain i.e. all
runoff disappears.

This definition is slightly different than most literature, as we drop an additional soil surplus term and
instead view W as the surplus of water rather than raw volume. So, a value of W (t) = 0 implies that the
system is operating with no surplus while W (t) > 0 and W (t) < 0 imply the system is operating on a
surplus or a deficit, respectively.

As a consequence, we can define SWCCV as the critical K∗
W (t) such that

K∗
W (t) = sup{kt : W (t+∆t) ≥ 0} = sup{kt : W (t) + P (∆t) ≥ E(∆t, kt) +R(∆t)}, (14)

which we note is a simple supply-demand argument2 and captures the same idea as the traditional definition,
which defines K∗

W (t) as the maximum population density at which water consumption is equal to the water
supply i.e. W (t+∆t)−W (t) = 0, if W was instead the volume of water.

2Interestingly, this is not the only time economic-looking ideas appear in the carrying capacity computation - perhaps there
is more to be fleshed out about a link between the two.
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We impose the assumption that E is surjective onto R+, otherwise Equation 14 could evaluate to ∞.
This is not an outrageous assumption at all and can usually be engineered to always be true in practice -
in our case, we define E as the product of ∆t and kt with some rate ds at which the species s depletes the
resource (units are resource units per unit biomass per unit time).

We can define SNCCV similarly by analyzing a compartment model for nutrition (in this case much
simpler):

N(t+∆t) = Y (xt)− E(∆t, kt)−R(∆t), (15)

where N is the density of nutrients, Y is the nutrient function as defined in Equation 11, and E and R are
defined analogously as in 13. xt denotes the abstract location on the real line that we are at the time t.

Thus, SNCCV is K∗
N(t) such that

K∗
N(t) = sup{kt : N(t+∆t) ≥ 0} = sup{kt : Y (xt) +R(∆t) ≥ E(∆t, kt)}, (16)

again making similar assumptions about E.

3.4.2 Carrying Capacity - Allocation

Now, we must convert both K∗
W (t) and K∗

N(t), which are the amounts of “biomass" at which the surplus
of resources is fully consumed, into specific values for the species K∗

W,s(t) and K∗
N,s(t) which will be

aggregated and plugged into the species specific Equation 1. We pose the following scheme based on
the idea of “constructing an optimal allocation," inspired remotely by auctions and uses principles from
information theory. We will use K∗

W (t) as the example but the exact same procedure is applied to K∗
N(t)

in practice.

We firstly notice that instead of thinking about the problem as allocating units of biomass, we transform
it into a more concrete problem of allocating units of the resource, in this example water. Namely, we
instead consider allocating the available preconsumption resources to the species, or the quantity

CW (t) = W (t) + P (∆t)−R(∆t). (17)

If we follow the mentioned surjective assumption, this is also the same as E(∆t,K∗
W (t)), as the sup in

Equation 14 is always attained.

Primarily, we should be allocating these resources in a manner that captures the ability to expand
of each species. . . or the growth rate! A bigger (relatively) growth rate means the species expands more
aggressively, so we allocate more of preconsumption resource to it, while a more passively growing species
should get less of the surplus.

The trick is to convert the vector of growth rates r into a probability mass function (pmf) through a
transformation. We considered two approaches - firstly, the most obvious transformation is to normalize
by the sum of all growth rates i.e. compute

pi =
ri∑
j rj

. (18)

This does normalization properly but problematically results in polarized values that cause instabilities in
our numerical solvers for the PDEs.

Instead, we take inspiration from maximum entropy distributions in information theory and choose to
take a softmax function (equivalently the Gibbs/Boltzmann distributions in statistical mechanics):

pi =
eri∑
j e

rj
. (19)

To see how creating the pmf this way is better, consider a case where r = (0.01, 0.9). If we allocate
according to rule 1, we get that species 1 would receive roughly 1% of the resources. Alternatively, if we
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compute as a softmax, species 1 would instead receive around 29% of the allocation. Simply, using the
softmax allocation instead of the summation based normalization reduces the extremity of the allocations
so that extremely lopsided allocations do not occur as often. This helps smooth out the changes in the
carrying capacity over time,especially when the number of species gets larger, which implicitly smooths
out and helps avoid stiff gradients.

After obtaining the pdf, the rest is straightforward: we allocate psCW (t) of the resources to species s,
and then divide by their consumption rate to get the carrying capacity in terms of units of biomass. In
symbols:

K∗
W,s(t) =

psCW (t)

dW,s

, (20)

where dW,s denotes the rate at which species s consumes W .

Clearly, you can repeat this routine to obtain K∗
N,s(t) for all s as well.

3.4.3 Carrying Capacity - Aggregation

We wish to now aggregate K∗
W,s and K∗

N,s. Two methods were proposed, both with reasonable physical
interpretations, so we ended up choosing the one that made the numerics tractable.

The first aggregation method is to simply take

K∗
s = min(K∗

W,s, K
∗
N,s). (21)

Borrowing from stoichiometry, the intuition is that one of the resources becomes a sort of “limiting
reagent" and the carrying capacity cannot exceed that value. Unfortunately, min can cause extremely
ragged and noisy carrying capacities, resulting in stiff gradients that cannot be properly computed and
modeled by numerical algorithms. Instead, we adopt an average aggregation method, or

K∗
s =

K∗
W,s +K∗

N,s

2
. (22)

A strong argument for why average aggregation is actually better than the limiting aggregation method is if
we considered more than just 2 resources. If we wanted to extend the model further, it becomes very clear
that minimum is probably no longer the true carrying capacity - instead, average is a better approximation
as it combines all the values rather than just throwing them out. Species can also evolve to substitute
certain nutrients for others in a sort of "multicollinearity" effect.

Overall, the big takeaway is that doing the aggregation through averaging not only makes the numerics
work but has physical merit and generalizes/scales to larger simulations better.

An example carrying capacity at an arbitrary timestep is shown in Figure 5. See the caption and 3.4.5
for a more in depth explanation of some of the features, especially the dark black box and blob of high
K∗

W s.

3.4.4 Extreme Precipitation Events

There are a lot of methods ranging from simple to complex on how to simulate an Extreme Precipitation
Event (EPE). As aforementioned, we definitely could have gone into each component of the model and
tweaked individual parameters, such as tweaking the λi,j of each Poisson distribution. However, we
avoided this approach because it would involve tuning even more parameters. In particular, it makes
simulating contrived environments difficult, as we notice later on that our ecosystem was sensitive to input
parameters - anything that was not in a relatively balanced and competitive initial state usually results in
1 species dominating.

So, for an EPE, we instead accumulate all minute effects of the shift in weather into one “weather
constant" γEPE that is constant but unique to this EPE and scale the production of water accordingly based
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Figure 5: Example precipitation (left) and nutrient (right) carrying capacities. The blob of high water
carrying capacities is a body of water. The dark block in both is an example of a pollutant mask - in this
case a very simple one that zeros out the resources in that area, so the carrying capacity is likewise 0. This
example is explored further in many of the later sections, especially section 6.

on how long has passed since the start of the EPE. We want the growth to be proportional to the existing
amount, so we choose to multiply the water surplus by a term that is γEPE to a time dependent exponent.
We formalize this by beginning with a few definitions.

Definition 3.1 (Interpolation Methods). Let I = [ℓ, r], 0 ≤ ℓ ≤ r be the current EPE interval. An
interpolation method is any mapping tdiff : I → [0,∞).

V-interpolation is defined as

tdiff(t) =

{
t− ℓ t ≤ ℓ+r

2
,

r − t t > ℓ+r
2
.

(23)

Half Valley Interpolation is defined as

tdiff(t) =


t− ℓ t < 3ℓ

4
+ r

4
,

3ℓ
4
+ r

4
− ℓ 3ℓ

4
+ r

4
≤ t ≤ ℓ

4
+ 3r

4
,

r − t t > ℓ
4
+ 3r

4
.

(24)

The shapes of these two methods are displayed in Figure 6. Now, assuming we working on a localized
scope in both the species sense and the location sense, we define the modified water input C ′

W (t) as

C ′
W (t) = CW (t) · γtdiff(t)

EPE , (25)

where tdiff is any interpolation method - we restricted ourselves to using v-interpolation and half valley
interpolation, but any methods work. Because this entire scaling is localized, we note the flexibility of
our model to simulate extreme precipitation events in a subset of the domain - we simply restrict the effect
of Equation 25 to this subset. After computing this modified input, we compute a modified carrying
capacity accordingly using the allocation and aggregation in subsubsection 3.4.2 and subsubsection 3.4.3
but applied to C ′

W (t).

3.4.5 Pollution

The way our structure is set up (Figure 1) permits extremely easy access to introducing pollution and other
environmental degradation. We simply can model them as an additional “mask" applied elementwise to
the water and nutrient values. So, we can compute water as

CW (t) = B ⊙W (t) + A⊙ P (∆t), (26)

where ⊙ denotes the element-wise Hadamard product of matrices.
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Figure 6: Shapes for different drought exponent interpolation methods, see Definition 3.1.

So, an example we use consistently is imagining the construction of a building or parking lot on a
subset of Ω, such that there are no longer resources there. We call this the parking lot pollutant from
now on. The parking lot pollutant’s mask matrix would look like a block matrix of 0s in the subdomain
and 1s everywhere else. For example, on a small grid of 5, it would look like

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1

 . (27)

In terms of implementation details, for big pollution events i.e. ones that make drastic changes in
certain regions of the domain, we do need to have a bit of a warmup period in order to smooth out the
gradients a bit and make the problem computable. But, we do note that other than this minor caveat of
potentially creating a gradient that is too large for the PDE solvers, this framework of introducing pollutants
allows for any type of pollutant one could want to add simply by specifying the behavior of a certain mask
matrix.

3.5 Implementation
The surprising fact of this section is that everything can be very trivally implemented - the vast majority

of operations are simple matrix operations and/or sampling from distributions. We were able to implement
the entire simulation in pure NumPy and Python.

Letting |S| be the number of species and G be the grid size, the complexity of the simulation to run T
timesteps is O(|S|TG2), which is not great but is still computable for reasonable parameters. Speedups
(namely parallelization) to mitigate this nearly quartic complexity are discussed in section 7.

4 Numerical Schemes
The above discussion constitutes a system of N (which is how much?) coupled time-dependent

ordinary and partial differential equations which we evaluate numerically. As all equations are time
dependent, and we are primarily interested in modelling population dynamics, a global time stepper for
integrating the competitive Lotka-Volterra equations and individual time evaluations within a single time
step comprise the full solver. We employ the explicit Runge-Kutta method RK45 to evaluate time steps
while embedding updates from other models within each time step. The choice of RK45 is based on its
theoretic stability and convergence properties. Overall, the numerical scheme may be summarized with
the following diagram:

4.1 Integration and Time Stepping through Competitive Lotka-Volterra Equa-
tions

The outer loop of our model consists of the system of competitive Lotka-Volterra equations, which are
integrated through time by RK45 to determine new population counts. We treat the time stepping through
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these equations as the global time while other system effects are incorporated within a time step to change
species-specific parameters.

We briefly review the scheme for a system of N unknowns and N ODEs given by the linear system
v′(t) = Av(t). Let k be the times step size and tn be the adaptively determined step size. The approximation
wn ≈ v(tn) is obtained by solving

wn+1 = wn +
1

6
(m1 + 2m2 + 2m3 +m4) (28)

where

m1 = kAwn (29)

m2 = kA

(
I + k

2
A

)
wn (30)

m3 = kA

(
I + k

2

(
I + k

2
A

))
wn (31)

m4 = kA

(
I + kA

(
I + k

2
A

(
I +

k

2
A

)))
wn. (32)

4.2 Finite Difference Discretization of Water Diffusion
As mentioned in section subsubsection 3.2.2, the chosen model of water precipitation diffusion is the

heat equation with diffusivity parameter α. We numerically evaluate this equation using a standard finite
difference scheme, which we describe in brief here. For ∆x,∆y representing node spacings in the x and
y directions, the differential operators are discretized using centered differences:

∂tP − α∆P =
P k+1
i,j − P k

i,j

∆t
− α

[(
P k
i−1,j − 2P k

i,j + P k
i+1,j

∆x2

)
+

(
P k
i,j−1 − 2P k

i,j + P k
i,j+1

∆x2

)]
= 0 (33)

where P n
i,j denotes the approximation of P (x, t) at time step n and gridpoint xi,j . Choosing a uniform

mesh such that ∆x = ∆y = h, the above scheme is equivalent to

P k+1
i,j ≈

(
1− 4∆tα

h2

)
P k
i,j +∆tα

(
P k
i,j−1 + P k

i−1,j + P k
i+1,j + P k

i,j+1

h2

)
(34)

which yields the Courant-Friedrichs-Levy condition ∆t ≤ h2

4α
.

We can easily do compute this at each time step on the interior of the domain. To determine the
boundary conditions, we note that would like to simulate this ecosystem as a small piece in a larger
ecosystem, which can be done by imposing zero Neumann conditions on ∂Ω. To discretize this, suppose
(i, j) was a location on ∂Ω and i = 0 (everything analogously holds for i, j ∈ {0, n − 1}2). We can
approximate (∂xP ) on the boundary by

0 = (∂xP )t0,j ≈
P t
−1,j − P t

1,j

2∆x
=⇒ P t

−1,j = P t
1,j. (35)

Thus, we can pad the discretized approximation with a layer of ghost cells whose values exactly match
the values 1 layer in from the boundary. To move a timestep forward, we can simply update all locations
including ∂Ω using the update rule in Equation 34.

4.3 Method of Lines Approximation of Linearized Fisher-KPP
As the time stepping of the system is adaptively managed by RK45, it remains to spatially approximate

the solution to the non-dimensionalized linearized Fisher-KPP PDE of the form ut = ∆u + u with
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homogeneous Dirichlet 0 boundary conditions. Recall from subsubsection 3.1.2 that this PDE is solved
N times for each species population density while subject to the continuity condition Equation 3. The
spatial derivatives are replaced with the finite difference

∆u+ u ≈ ui−1,j − 2ui,j + ui+1,j

h2
+

ui,j−1 − 2ui,j + ui,j+1

h2
+ ui,j (36)

on a uniform grid of width h consisting of M2 grid points. The PDE is thus approximated by a system
of M ODEs in the independent variable t which is integrated in time at each grid point. The boundary
values are determined by the no-flux conditions of Fisher-KPP, specifically that the boundary terms in the
domain are set to 0 while the initial condition is determined by the population density in the domain at
the preceding time step. Explicitly, the linear system of ODEs is posed in M + 1 unknowns and M + 1
equations as u′(t) = Au(t) where

u(t) =


u0(t)
u1(t)

...
uM(t)

 , A =


4− h2 −1 −1 · · · −1
−2 4− h2 · · · 0 0
... . . . . . . ...
0 0 · · · −2 4− h2

 . (37)

The above scheme is evaluated on each component of the population densities during a single time
step of the outer integration loop of the Lotka-Volterra equations. To perform the time integration, we
employ a second RK45 time stepper to integrate Fisher-KPP for each species’ population densities over
[tn, tn+1] where tn and tn+1 are the current and next times determined by the Lotka-Volterra integrator,
respectively. The primary motivation for the second integrator is the adaptivity of time stepping, as this
system develops stiff gradients and may lead to non-convergence of the method overall. At the expense of
increased computational overhead, this combination yields a stabler numerical scheme.

To evaluate the validity of the discretization for the Fisher equation, we provide Figure 7, which
confirms the results of Tang and Weber [TW91]. Specifically, due to a time-dependent balance of the
diffusion and linear term, a local perturbation grows to a steady-state solution that replaces the quasi-steady
state gradually. Concretely, this implies that the state u = 0 in Ω is replaced by the state u = K when
considering dimensionalized values. In the following, we perform 100 time steps in the range [0, 10]
of the competitive Lotka-Volterra model for two species coupled with the Fisher-KPP equation for both
population densities. The initial conditions are specified by

u1(x, 0) = 80 exp−((x−0.5)2+(y−0.5)2), u2(x, 0) = 20 exp−((x−0.5)2+(y−0.5)2) (38)

which are two normally distributed Gaussians centered at the centroid of the square domain Ω. The
growth rates are set to (r1, r2) = 0.72, 1.27, carrying capacities to (K1, K2) = (60, 100), and {α}0,1 =
0.1, {α}1,0) = 1 where {α}ii = 1 by convention. We observe the rapid diffusion of population 2, which
is initialized far below its carrying capacity and thus experiences significant growth from the competitive
LV equation. For comparison, we provide a reference solution of only the competitive LV equations for
these initializations to illustrate the differences in solution. In particular, while competitive LV uniformly
distributes the initial populations, our model more realistically captures the transfer dynamics of the
populations. Although the solved PDE is linearized, it is clear that the structure is preserved when
non-dimensionalizing, meaning for this initialization, the linearization is valid.

5 Simulating Multi-Species Interactions with Environmental Stress
Using the model described above, we perform a variety of simulations to analyze the long-term behavior

of multi-species habitats under a variety of environmental effects to explore the question of biodiversity
increase due to species symbiosis. A theoretical limitation on the fidelity of the simulation comes from
Smale’s 1976 [Sma76] theorem which states that the competitive Lotka-Volterra system is compatible with
any dynamical behavior in general for large numbers of N . In other words, even under the requirement on
α,
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Figure 7: Diffusion of population and interface propagation of two populations initialized as univariate
Gaussians. Left: classical competitive LV equation with the same initialization and parameters, Right:
Coupled competitive LV and Fisher-KPP diffusion illustrating physically reasonable population diffusion
throughout the unit square.
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5.1 Quantifying Biodiversity
Firstly, we must attribute some actual meaning to biodiversity. As intuition might serve, we would like

to say that a fairly even population distribution is more biodiverse while particularly uneven distributions,
perhaps those having only 1 or 2 species in abundance out of several more in total, would be less biodiverse;
we will propose using the true diversity metric or Hill numbers of order q = 2. [CCJ16] For order q, the
formula is given as

qD :=
1

q−1

√∑N
i=1 pi

(
pq−1
i

) (39)

where N is the total number of types in the dataset and pi :=
Pi∑
Pj

the proportional abundance of
the i’th type (in our case, a type ∼ a species), which we have taken to mean the odds of, over a uniform
distribution assuming replacement, selecting species i. The interpretation is somewhat straightforward,
though dependent on q: we read it as the ‘effective number‘ of types s.t. more abundant types are given
more weight in the generalized average as q is increased. In the q = 1 case, the measure 1D can be
read as the effective number of common/ typical species; in the q = 2 case, the measure can be read
as the effective number of dominant/ very abundant species in the ecosystem; beyond q ≥ 3, there is
little additional meaning associated to particular values and the variations with increases in q become
increasingly marginal.[CCJ16] While it may seem sensible at face value to work towards a plot of qD
against q, consider the discontinuity at q = 1 and that the marginal information gain of larger q becomes
almost meaningless very quickly; it is for these reasons that we will choose to work with 2D, allowing us to
penalize particularly sparse and particularly abundant species while retaining intuition on the interpretation
of the numbers. Additionally, for q = 2, we regain the inverse Simpson index.

Lastly, consider the following optimization problem

argmax
N∈N

1

k

k∑
i=1

2D [Sk;Ωk;Wk;N ] (40)

for a sequence of simulations Sk for N -species dynamics given initial conditions Ωk and subject
to weather and pollution patterns Wk with k sufficiently large. Though computing this directly may
itself not be especially meaningful given the high dimensionality, susceptibility to chaotic dynamics, and
stochasticity, the process of doing so will certainly paint a picture of the relation we are attempting to
capture.

5.2 Symbiotic Effects in Dynamic Environments
We first analyze symbiotic effects emerging in habitats with varying numbers of species subject to the

same antagonistic effects from the environment. To do so, we simulate environments in which there are
irregular weather cycles including periods of drought reducing water availability in regions of the domain,
reduction of habitat rendering regions of the domain uninhabitable, and pollution effects which deplete the
environment’s available resources. Keeping these stressors the same against studies, we vary the number of
species present in the habitat, randomly determine the positive definite matrix of inter-species interaction
coefficients αij and growth rates.

Figure 8a is a sampling of 5 random trajectories of evolution for the system along which time-averaged
biodiversity scores 2D are computed and a plot of the average 2D scores is plotted. Figure 8b represents
a smaller trajectory of the same process with a larger number of species. As antagonistic environmental
events are spatially and temporally random and species parameters are randomized, this sampling is
representative of the overall dynamics of the system as the number of plant species increases. The figures
depict an oscillatory behavior of the biodiversity metric with respect to the number of species present
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(a) Trajectories for N = 2, . . . , 7 (b) Trajectories for N = 8, . . . , 11

Figure 8: Simulated 2D across various trajectories. We observe a spike at 6 species.

in the sample, though an apparent trend is that a considerable increase in biodiversity is observed when
N = 6, which is true across all trajectories. A similar effect can be observed for N = 4, though it is less
significant both in terms of size of increase and frequency of occurrence.

In line with the problem statement, the number of required species for a symbiotic inter-species effect
to occur is at least N = 4, where a steep increase in the biodiversity index is observed on average. A
clearer trend is that at N = 6, the simulated plant community undergoes a greater symbiotic effect and
approaches a population equilibrium which is stable under external stresses. On the other hand, the steep
reduction in 2D for N = 5, which occurs between two steep increases at N = 4, 6 suggests that there
is not a clear correlation between the number of species and the resulting biodiversity index. Indeed,
Figure (b) confirms a similar oscillatory behavior where the biodiversity index increases dramatically at
N = 9, though at a lesser extent than at N = 6 and diminishes significantly to the theoretical minimum at
N = 11. This oscillatory biodiversity behavior suggests that a raw count of the number of species in an
environment is not an adequate proxy for the stability of the ecosystem, though for certain values of N (at
4, 6, and 9) there are weak indicators of a positive correlation between N and 2D.

5.3 Species Antagonism and Interaction Structure
The specification of the interaction matrix and intrinsic growth rates for each species constitute two

factors by which inter-species effects can be studied across a range of scenarios representing different
species. As positive definiteness of the α interactions matrix is a necessary condition for stability of the
ecosystem, we only consider scenarios in which this requirement is upheld.

5.3.1 Theoretical Equilibrium Point Convergence

Previous theoretical analyses of the competitive Lotka-Volterra system have yielded theoretical equilibrium
points for the system wherein different species may co-exist under a normalization of populations to
0 ≤ xi ≤ 1 [SWA05]. Specifically, if each species is identical in its interactions with exactly two other
species and has no interaction with other species in such a way that each row of the inter-species interaction
coefficients matrix α is an index permutation around a circle of ⟨1, α1, 0, 0, α2⟩, then it is known that the
system attains a coexisting equilibrium point given by

x =
1

α1 + α2 + 1
(41)

meaning each species attains the same population count. Using the full model with randomly initialized
population data in the range (0, 1), interaction matrix
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α =


1 0.25 0 0 0.5
0.5 1 0.25 0 0
0 0.5 1 0.25 0
0 0 0.5 1 0.25

0.25 0 0 0.5 1

 (42)

with uniform growth rates of 0.1, two drought events of order 0.4, 0.5 at two disjoint periods of time
[0.1, 0.4]∪ [0.7, 0.9] at distinct subregions, the average populations for each species reaches an equilibrium
of ≈ 0.122 with exact values given by [0.1193, 0.1216, 0.1221, 0.1224, 0.1261] indexed by species number.
Although the theoretical coexisting equilibrium point for these interaction coefficients is not attainable due
to the external stresses experienced by our simulated population, we nevertheless obtain results of a stable
co-existence equilibrium for the system wherein there is substantial spatial overlap between populations
and they all attain approximately the same equilibrium population size. The theoretical equilibrium
population is approximately 0.571, but the introduction of irregular drought cycles across the domain
leads to considerable long-term system convergence population dampening. We perform a longitudinal
study of the equilibrium convergence an analogous series of simulations forN = 5, 6with variable column
sums to quantify different levels of inter-species activity.

Table 1: Difference between Simulated and Theoretical Equilibrium Populations
Species Count α− I Column Sum

0.1 0.25 0.50 0.75 0.95

5 -0.788 -0.691 -0.522 -0.449 -0.365
6 -0.511 -0.364 -0.155 -0.121 8.179e-3

In Table 1, we provide the difference between the simulated and theoretical equilibrium equilibrium
populations attained by the system with identical external stressors. In each evaluation, α is a positive
definite matrix with a unit diagonal with the additional property that α − I is a specified value (I is
the N × N identity matrix). These scenarios are evaluated along a single trajectory of the system with
identical stressors. The apparent trend is that the addition of another species enables the simulated system
to converge closer to the theoretical equilibrium. Although in general, the stressed equilibrium populations
are substantially smaller than in the idealized case, we can nevertheless consider this as numerical evidence
that a symbiotic relationship allows a system to converge to a state closer to the theoretical equilibrium.

We perform a second study with the same set-up to quantify the differences in simulated biodiversity.
Notice that in the theoretical equilibrium with N species, each has a proportion abundance of 1/N and
maximizes 2D to the value of N .

Table 2: 2D Evaluations for Simulated Equilibria
Species Count α− I Column Sum

0.1 0.25 0.50 0.75 0.95

5 4.469 3.916 4.265 4.506 4.321
6 5.208 5.312 5.195 4.624 3.605

In the above, we have collocated the computed 2D values for each simulated system where higher values
are better. In each case, N is the theoretical equilibrium maximum and the above quantifies the difference
between the simulated and theoretical equilibrium biodiversities. A key observation is that the equilibrium
biodiversity differences for a larger N are also substantially larger for every initialization of α. Thus, while
increasing the number of species improves the simulated population equilibrium, the biodiversity of the
resulting system is inferior to the case with fewer species in some situations, especially when one pair of
inter-species interactions is very antagonistic (specifically at α− I = 0.95).
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However, our model indicates that the biodiversity index decreases monotonically as two species
compete more strongly (as α − I → 1) and increases considerably as the competitive effects decrease.
Additionally, while the biodiversity index relative to the theoretical maximum may not necessarily improve
with the addition of a new species, Table 2 strongly indicates that decreasing competitive effects in the
system ceteris paribus leads to an improved biodiversity index.

Comparing the two tables suggests a trend with respect to the addition of a new highly-competitive
species. In particular, the number of species may reduce the difference between the simulated and
theoretical equilibrium populations at the expense of biodiversity in the environment. This is reminiscent
of Chris D. Thomas’ theory of introducing invasive species to unstable ecosystems with the aim of
regenerating other species by creating a suitable habitat or food source for existing populations.

5.3.2 Interesting Species Types

We now employ our simulation to investigate the interactions of species that have a distinctive type. In this
small case study, we consider a system with 3 species parameterized as follows. We consider a specific α
matrix:

α =

 1 0.1 0.2
0.4 1 0.3
0 0 1

 . (43)

Namely, species 3 is a unique type: we can consider it as a very “resilient" agent as the effects of the other
species on it are 0. We use growth rates as r = (0.5, 0.7, 0.5). Finally we also specify the demand vectors
as

dW = (0.07, 0.07, 0.08),dN = (0.06, 0.06, 0.045). (44)

So, not only is 3 very resilient, it is more reliant on water than the other agents but much less reliant on
nutrients. We will observe that this setup dampens the effect of droughts on species 3. The results are
displayed at various times in Figure 9.

Even though the growth rate is the same as species 1 and the water demand higher, it ends up
outperforming because of its resilience and lower nutrient demand - it serves as verification that our model
can capture these behaviors that are observed in real environments.

5.4 Varying Drought Frequencies
The previous section’s analysis runs the problem with some minor droughts occuring throughout. In

this section, we run a similar simulation, keeping the grids and seeds the same, but with 4 drought events
occuring sparsely throughout the domain and on various subsections of the domain; their types, interval,
γEPE , and location specified by upper left (UL) and lower right (LR) indices (on the mesh) are displayed
in Table 3.

We run the simulation 5 times for the same seeds as before with n ∈ {2, 3, 4, 5, 6} to observe the effect
of drought on 2D. Unfortunately, the simulation is slow without parallelization beyond n = 7 - this is
discussed in the shortcomings. The results are plotted in Figure 10 along with a mean line.

Certainly, it is still apparent that having more species up to a point seems to contribute to greater
diversity scores, and based on our random seeding the optimal value seems to between 5 and 6 species.

Type Interval γEPE Location
Half Valley [0.2, 0.4] 0.2 UL: (10, 10), LR: (15, 15)
Half Valley [0.0, 0.3] 0.4 UL: (20, 20), LR: (30, 30)
Half Valley [0.5, 0.7] 0.3 UL: (10, 20), LR: (15, 25)
Half Valley [0.7, 1.0] 0.3 UL: (0, 0), LR: (15, 15)

Table 3: Drought configurations



Team # 2315431 Page 20 of 23

However, only having 5 trajectories is certainly not enough to invoke the strong law of large numbers, yet
we can clearly observe the desired relationship - with more species, biodiversity is more robust to droughts
and extreme precipitation. Furthermore, the results

5.5 Long-term Species Stabilization
In the previous sections, we have explored issues of population dynamics by considering a variety of

weather, pollution, and habitat reduction effects while changing the number of co-existing species and their
intrinsic properties. The preceding analyses have suggested an ecosystem management strategy that may
rescue declining plant populations from extinction [Zay07]. Specifically, the introduction of invasive new
species into the ecosystem that interact weakly with all existing plant populations which in the equilibrium
case may stabilize the population dynamics to regenerate. Although this oftentimes comes with a negative
effect on the biodiversity of the domain, there are several examples in the wildlife management sciences
that utilize this exact technique for ensuring long-term viability of endangered ecosystems [SSO11].

6 Ablation Study: No Diffusion vs Diffusion
We analyze what happens when the model is run completely without the Fisher KPP diffusion. In

particular, it reveals a missing desirable behavior that only occurs when diffusion is included. See
Figure 11.

We notice that the parking lot pollutant indeed makes its impact as expected, but upon further inspection
we actually notice some of the population seeping into the parking lot void when diffusion is used. The
minimum value of population at t = 5 with no diffusion is essentially 0, but the value when diffusion is
encountered is actually > 1.

We claim that the result with diffusion makes drastically more physical sense. There will never be
locations with purely 0 biomass unless the species has essentially gone extinct, and especially this will
not occur in real environments in a region where there is a healthy community of plants. This parking
lot pollutant is placed inside where most of the population resides (on top of a large water source), so it
makes sense that there is a nonneglible diffusion of the outer population into the inner void.

7 Strengths and Weaknesses
After that barrage of case studies, we now turn to analyzing what we believe are the strenghts and

shortcomings of our model, and how the shortcomings could potentially be addressed. For strengths, we
hope that it is clear why we believe our framework is strong.

1. The model is incredibly general. There is so much customization that can occur because our model
accounts, captures, and simulates so many different dynamics.

2. Each component itself is simple and allows for extensions. On the other side of the same coin,
although our model is general, each component is not complex or esoteric at all - we were able to
implement everything just using Python packages NumPy and py-pde.

3. Solution Fidelity and Scalability It is difficult to match the fidelity and precision of a solution via
numerically solving differential equations in this fashion. Due to well-understood convergence and
error bound results for the methods we used, decreasing the time-step and spatial-step in a fashion
according to the CFL condition allows for configurable precision.

As for shortcomings, there are a few that unfortunately prevented deeper exploration using the general
framework.

1. Computationally expensive, especially as the number of species grows. Assuming the grid is
of size n × n, this is because we are essentially introducing a collection of n2 new PDEs for the
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computer to solve.
There are a variety of speedups we could but did not have time to implement, e.g. employing
parallelization and vectorization strategies for the iterative procedures. Our finite difference method
for solving the heat equation is currently computed using two for loops in Python, but the operation
over the domain is embarassingly parallel. This would offer a considerable speedup and give more
freedom to run demanding simulations, but we were not able to successfully implement it.

2. Curse of Dimensionality Our model is deeply intricate and complex, meaning that in order to get
meaningful results such as biodiverse systems at an equilibrium, the parameters must be carefully
chosen so that no species completely dominates another. The quantities being dimensionless does
not help much either with this point, as it is hard to inject real world intuition. We ended up
having to work with a small set of parameters that we knew worked rather than having the time to
explore and experiment with many new environments. The solution here is probably to reintroduce
dimensionality and go through the tedious trouble of computing dimensionality transforms.
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Figure 9: Realization of simulation for 3 species from top to bottom at t = 1, 2, 3, 5. Species 3 is a resilient
species. We can observe that it outperforms the first species completely, and is also quicker to recover from
a drought than the other two due to its low nutrient demand; at t = 2 it has already essentially recovered
from the drought that occurred on interval [0, 1.5] centered approximately at (0.2, 0.2), while a dark spot
is still present for the other species.
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Figure 10: 2D Values for 5 realizations of the simulation with additional and stronger droughts for each
n ∈ {2, 3, 4, 5, 6}.

t = 1, No Diffusion t = 1, Diffusion

t = 2.5, No Diffusion t = 2.5, Diffusion

t = 5, No Diffusion t = 5, Diffusion

Figure 11: Ablation study on the Fisher KPP diffusion module. We run with a set seed (notably the same
seed as Figure 5) and compare values when no diffusion and diffusion are used.
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