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Abstract

Deep learning models often generalize surprisingly well despite possessing far more parameters than
traditional theories would suggest is optimal. The Deep Linear Network (DLN) is a phenomenolog-
ical model for over-parameterization that also reveals an intricate geometric structure underlying
training dynamics. We address two open problems in the DLN: (1) the explicit computation of
geodesics in the full-rank manifold, and (2) a deeper exploration of the “low-rank attraction” ob-
served for quadratic energies. We derive a general system of ordinary differential equations (ODEs)
describing geodesics in the DLN and provide closed-form solutions in special cases where endpoint
singular vectors are related by rotation. Then, through numerical experiments, we demonstrate
the sensitivity of low-rank attraction to factors such as initialization schemes and energy sparsity.
Finally, we conclude with an investigation into using an entropic log-volume form related to the ge-
ometry on the full-rank manifold as an explicit regularizer for a simple class of energies. Our findings
demonstrate how theoretical geometry can interplay with practical insights in over-parameterized
networks and conclude by highlighting several open directions for research in expanding the DLN
theory and bridging its insights with true deep learning.
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Chapter 1

Introduction

1.1 Background

Modern deep learning advances have demonstrated that simple ideas performed at scale can prove
to be powerful for approximating functions and solving tasks such as protein folding or natural
language generation [Jumper et al., 2021, Achiam et al., 2023, Kaplan et al., 2020]. However, many
of these advances are motivated purely by empirics but lack significant grounding in theoretical
principles. Rigorously justifying why deep learning models generalize well despite having an enor-
mous number of parameters, defying classical machine learning tradeoffs, remains an open problem
[Allen-Zhu et al., 2019, Arora et al., 2020].

A cornerstone of modern deep learning is the multi-layer perceptron (MLP) [Rumelhart et al.,
1985]. The MLP consists of N ∈ Z+ layers, each which composes affine transformations with
elementwise application of a nonlinear activation function σ : R → R:

xp = σ(Wpxp−1 + bp) (1.1)

where x0 ∈ Rd0 is the data sample and Wp ∈ Mdp×dp−1 and bp ∈ Rdp . This model is overparam-
eterized because the same function can effectively be approximated by multiple choices of values
for the Wps and bps (Figure 1.1) - some tasks involve training neural networks with millions of
parameters to fit datasets with thousands of points. Another practical example of an overparam-
eterized model is the transformer’s attention mechanism [Vaswani et al., 2017]. The self-attention
module is overparameterized in the same way the Deep Linear Network will be. For a sequence of
n d-dimensional inputs x ∈ Rn×d, the self attention operator contains terms like

exp ⟨WQxi,WKxj⟩ = exp(xT
i W

T
QWKxj), (1.2)

where WQ and WK are the query and key matrices of the module. Clearly the matrix WT
QWK is

overparameterized - in fact, many interpretability papers argue it does not make sense in practice
to consider these matrices separately [Elhage et al., 2021] and instead should be thought of as a
single kernel that modifies the “metric” within this attention layer. However, WQ and WK are
trained separately because it is what works in practice.

Neural networks are trained via gradient descent on an energy/loss function

E : RdN → R. (1.3)
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Figure 1.1: Visualization of overparameterization. Multiple sets of parameters appear to induce the
same function according to a known distribution, generating a fiber of parameters Ffθ above each
function fθ. However, these different parameters may behave differently on unknown data points.

Examples of E include quadratic losses to a specified label or next token cross entropy in an autore-
gressive language modeling task. In order to train the models, the gradient of E is backpropagated
via the chain rule onto all parameters Wp and bp, generating small parameter updates that itera-
tively take the parameters towards the optimal solution [Rumelhart et al., 1985]. The discrete time
updates are applied via an optimizer and repeated over batches of data that approximate the true
distribution of data.

1.1.1 The Deep Linear Network

We will use Symmd to denote d×d symmetric matrices, Od to denote the group of d×d orthogonal
matrices, and Md to denote the set of d× d matrices.

The Deep Linear Network (DLN) [Arora et al., 2018a,b, Menon, 2024] is a phenomenological
model specifically targeted at understanding what mathematical structure emerges when models
are overparameterized. The DLN of width d ∈ Z+ and depth N ∈ Z+ consists of two spaces: the
“upstairs” parameter space MN

d and “downstairs” observable space Md, linked by the mapping
ϕ : MN

d → Md that sends

(WN ,WN−1, . . . ,W1) 7→ X = WNWN−1 · · ·W1. (1.4)

The parallel to MLPs is clear - we strip away the nonlinearities and biases to form the absolute
simplest model of overparameterization: composition of linear mappings / matrix factorization.
Indeed, upstairs, we have Nd2 dimensions yet the downstairs observable space is just d2 dimensions,
capturing the innate dimensional difference that characterizes an overparameterized system.

Discrete time gradient descent of an energy is simply approximating the continuous time mini-
mizing gradient flow

Ẇ = −∇WE(X) = −∇WE(ϕ(W)). (1.5)
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Because the loss function only depends on the observable state X, the gradient itself can only
push the parameters in d2 dimensions within the larger Nd2 dimensional ambient space. A simple
application of the chain rule expands the flow into coordinates that makes these “thin” gradients
explicit [Arora et al., 2018a]. For all 1 ≤ p ≤ N ,

Ẇp = −(WN . . .Wp+1)T dE(X)(Wp−1 . . .W1)T , (1.6)

where

dE(X)ij =
∂E

∂Xij
.

Notice that the pre- and post-factors are fixed by over-parameterization. The only quantity that
changes with E is dE(X), a d2 dimensional matrix.

This gradient flow is the fundamental object of study in the DLN. Fully understanding the
surprisingly intricate structure is likely of utmost importance to generalizing results to true deep
learning. In this thesis, we will offer initial work towards deeper theoretical and experimental
understanding through computation of geodesics and numerical simulations. A summary of this
thesis is as follows:

1. We will review the fundamental results describing the DLN, including discussion of invariant
manifolds and Riemannian geometry (Section 2.1). The important results are the flow along
a “stable” invariant manifold (Theorem 2.1.2) that we will revisit repeatedly and recognizing
the Riemannian geometry underlying said flow (Theorem 2.2.2).

2. We present new intuition for the geometries at play through results on the geodesics in the
DLN (Section 3.1). We motivate our computations via first deriving the geodesics on the
classic Bures-Wasserstein geometry (Theorem 3.2.3) and then extending the derivations to
the DLN in Theorems 3.3.2 and 3.4.2.

3. Finally, we conduct principled numerical experiments to replicate and extend existing under-
standing on low rank attraction and provide new simulations for a thermodynamic perspective
on the DLN (Section 4.1). We investigate sensitivity of low rank attraction to initialization,
dimensionality, and sparsity and present new results using an entropic volume-based regular-
izer.

Proofs will be presented when novel or appropriate (or charming). Otherwise, readers will be
referred to the original sources.

5



Chapter 2

The Deep Linear Network

2.1 Preliminaries

We begin with a continued overview of the DLN model formulation and fundamental results in
the DLN. A core foundation of any good dynamical system study is the identification of conserved
quantities through symmetries.

To this end, we partition the ambient MN
d into algebraic varieties MG, where

G = (GN−1, GN−2, . . . , G1) ∈ SymmN−1
d

characterizes a solution set in MN
d to the quadratic equations

MG = {W ∈ MN
d |WT

p+1Wp+1 = WpW
T
p −Gp, 1 ≤ p ≤ N − 1}. (2.1)

The first result is that these varieties are invariant under the gradient flow from Equation 1.5
(Figure 2.1).

Theorem 2.1.1 (DLN Invariant Manifolds [Arora et al., 2018b]). Assume W(t) obeys the gradient
flow in Equation 1.5 with initial condition W0 that induces an initial algebraic variety G0. Then,
the following two properties hold:

1. W(t) ∈ MG0 for all t ∈ R (i.e. d
dtGp = 0).

2. The downstairs matrix X(t) = ϕ(W(t)) satisfies

Ẋ(t) = −
N∑

p=1

(Ap+1A
T
p+1)dE(X)(BT

p−1Bp−1), (2.2)

where Ap and Bp respectively define the prefactors and postfactors

Ap = WNWN−1 · · ·Wp,

Bp = WpWp−1 · · ·W1.
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Figure 2.1: Simple illustration of invariant manifolds in DLN geometry. If we consider d = 1, the
invariant manifolds are exactly hyperbolas. The green manifold is the balanced manifold and passes
through 0.

Proof. The proofs of both parts are quite similar and follow from applications of the product rule
and Equation 1.6. First, consider

d

dt

(
WT

p+1Wp+1 −WpW
T
p

)
. (2.3)

The terms in the product rule come out to be

ẆT
p+1Wp+1 = −(Wp · · ·W1)dE(X)T (WN · · ·Wp+1) = WpẆ

T
p , (2.4)

WT
p+1Ẇp+1 = −(WN · · ·Wp+1)T dE(X)(Wp · · ·W1)T = ẆpW

T
p . (2.5)

Thus, we conclude that d
dtGp = 0, so these varieties are invariant manifolds. The second part is

very similar. We use product rule to expand ϕ(W) as

d

dt
ϕ(W) = ẆNWN−1 · · ·W1

+ WNẆN−1WN−2 · · ·W1

+ . . .

+ WNWN−1 · · ·W2Ẇ1.

Plugging in Equation 1.6 into each term gives the expected form of the flow.

In the special case that G = 0, we find even further structure: all Wp’s must be isospectral.
Thus, we can foliate M0 by rank into manifolds Mr for 0 ≤ r ≤ d. We are particularly interested
in the full rank case Md, called the balanced manifold and denoted as just M.
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Not only do Wp have the same singular values, their singular vectors must align. Let Wp+1 =

Qp+1ΛQT
p and Wp = Q̃pΛQT

p−1 be the SVDs. Then, we have that

WT
p+1Wp+1 = QpΛ2QT

p ,

WpW
T
p = Q̃pΛ2Q̃T

p .

So, on the balanced manifold, Qp = Q̃p. These symmetries reveal a special parameterization
along the balanced manifold that naturally arises through the singular value decomposition (SVD).
Explicitly, using the SVD, we can rewrite each coordinate of W ∈ M as

Wp = Qp+1ΛQT
p , 0 ≤ p ≤ N − 1, (2.6)

giving the bijective parameterization map

ξ : Rd
+ ×ON+1

d , (Λ, QN , QN−1, . . . , Q0) 7→ (WN ,WN−1, . . . ,W1). (2.7)

Λ is naturally related to the singular values of ϕ(W) by the nth root, and QN and Q0 are bound
to the left and right singular vector matrices of X = ϕ(W).

We can double check the dimensions: in the full ambient space, we have Nd2 total dimensions.

The Gps each specify d(d+1)
2 equations (they are symmetric). Thus, this leaves

Nd2 − (N − 1)
d(d + 1)

2
= d2︸︷︷︸

end to end

+ (N − 1)
d(d− 1)

2︸ ︷︷ ︸
ON−1

d orbit

, (2.8)

exactly corresponding to the parameterization we found. Furthermore, using this parameterization,
we can simplify the downstairs flow in Theorem 2.1.1.

Theorem 2.1.2 (Downstairs Balanced Manifold Flow, Arora et al. [2018b]). Let W0 ∈ M. Then,
Equation 2.2 simplifies to

Ẋ = −
N∑

p=1

(
XXT

)N−p
N dE(X)

(
XTX

) p−1
N . (2.9)

Proof. Because of the parameterization, we notice that the prefactors and postfactors collapse:

Ap+1 = QNΛ
N−p
N QT

p and Bp−1 = QpΛ
p−1
N QT

0 . (2.10)

Thus, the flow also simplifies.

Ẋ = −
N∑

p=1

(
QNΛ

2(N−p)
N QT

N

)
dE(X)

(
Q0Λ

2(p−1)
N QT

0

)
(2.11)

= −
N∑

p=1

(
XXT

)N−p
N dE(X)

(
XTX

) p−1
N . (2.12)
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This final flow on the balanced manifold will be revisited when we compute the geodesics in
Section 3.3 and will be the main flow we numerically analyze in Section 4.1.

Remark 2.1.3. In practice, zero centered initialization schemes with small variance will necessarily
begin near the balanced manifold. Indeed, suppose (Wp)ij ∼ N (0, σ2) iid for all 1 ≤ p ≤ N and
1 ≤ i, j ≤ d. We will almost surely be full rank. Furthermore,

E[(Gp)ij ] = E

[
d∑

k=1

(Wp)ik(Wp)Tkj − (WT
p+1)ik(Wp+1)kj

]
(2.13)

=

d∑
k=1

E
[
(Wp)ik(Wp)Tkj

]
− E

[
(WT

p+1)ik(Wp+1)kj
]

= 0. (2.14)

So, there is practical motivation to be concerned with the balanced manifold - very often at initial-
ization we will be operating close to if not effectively on the balanced manifold.

Remark 2.1.4. In forthcoming work, Kathryn Lindsey (Boston College) and Govind Menon
(Brown University) provide a characterization of the balanced manifold as the solution to a simple
optimization problem over the preimage of a downstairs point X. In particular, let

FX = {W|ϕ(W) = X}. (2.15)

Then, the intersection of the balanced manifold with the fiber M∩FX is exactly the set of solutions
to the optimization problem

min
W∈FX

N∑
p=1

Tr
(
WpW

T
p

)
. (2.16)

In other words, the balanced manifold is characterized by the minimizers of the Frobenius norm.
Naturally, one can consider two follow ups:

1. Can we construct a gradient flow of the Frobenius norm along the fiber that converges to a
point in M using this energy? (This just involves computing the tangent space and appropriate
gradient vector gradι M).

2. Extend this characterization to the general deep learning case.

These results are particularly exciting because they are the first steps to extending DLN theory to
nonlinear deep learning by generalizing the fundamental notion of balancedness via a characteriza-
tion that is not specific to linear networks.

2.2 Riemannian Geometry

A clever observation made by Bah et al. [2022] is that Equation 2.9 can be rewritten as a Rieman-
nian gradient flow i.e. of the form

Ẋ = − gradh E(X) (2.17)

for the appropriately defined metric h and manifold M.
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Figure 2.2: An illustration of basic Riemannian geometry. At each point X on a manifold M,
we compute the tangent space TXM, the set of derivatives of smooth paths through X. For each
tangent vector in TXM, the metric gX specifies the length of the vector, thus redefining the entire
geometry in the tangent space.

Specifically, recall a metric assigns a length to each tangent vector Z ∈ TXMd (Figure 2.2). Let
the metric gN on Md be defined as

∥Z∥2gN = Tr
(
ZTA−1

N,X(Z)
)
, (2.18)

where AN,X : TXM∗
d → TXMd is the linear operator that maps from 1-forms to the tangent space

with explicit form

Z 7→
N∑

p=1

(
XXT

)N−p
N Z

(
XTX

) p−1
N . (2.19)

The nature of the operator AN,X is very curious - along the balanced manifold M, it turns out
that AN,X can be diagonalized and is positive definite.

Theorem 2.2.1 (Diagonalization of AN,X). Let X = UΣV T be the SVD of X. AN,X is a positive
definite and symmetric linear operator with eigenvectors ukv

T
l and corresponding eigenvalues

λN
kl =


σ2
k−σ2

l

σ
2
N
i −σ

2
N
j

k ̸= l,

Nσ
2(N−1)

N

k k = l,

(2.20)

for all 1 ≤ k, l ≤ d.

Proof. We first observe that

(XXT )
N−p
N = UΣ

N−p
N UT (2.21)

(XTX)
p−1
N = V Σ

p−1
N V T (2.22)
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Thus, the AN,X operator applied to the rank one matrix ukv
T
l gives

N∑
p=1

UΣ
2(N−p)

N UTukv
T
l V Σ

2(p−1)
N V T =

N∑
p=1

UΣ
2(N−p)

N eke
T
l Σ

2(p−1)
N V T

=

(
N∑

p=1

σ
2(N−p)

N

k σ
2(p−1)

N

l

)
ukv

T
l .

The summation is a geometric series that, upon simplification, gives the eigenvalue

λN
kl =

σ2
k − σ2

l

σ
2/N
k − σ

2/N
l

(2.23)

when k ̸= l. When k = l, the eigenvalue can be seen as (1) the result of the geometric series
collapsing or (2) as the limit of limσl→σk

λN
kl.

With this metric in mind, Equation 2.17 comes into fruition.

Theorem 2.2.2 (DLN Riemannian Gradient Flow, Bah et al. [2022]). Equation 2.9 can be rewritten
as a Riemannian gradient flow on (Md, g

N ):

Ẋ = −gradgNE(X), (2.24)

where Md is the manifold of all rank d matrices in Md.

Proof. The core of the proof lies in the computation of the gradient vector through the dual rela-
tionship with the differential of E. Recall that by definition, for all Z ∈ TXMd,

dE(X)(Z) = gN
(
gradgNE(X), Z

)
. (2.25)

We can compute both sides, letting V = gradgNE(X) be the vector we are looking for:

dE(X)(Z) = Tr(dE(X)TZ), (2.26)

gN (V,Z) = Tr
(
V TA−1

N,X(Z)
)
. (2.27)

Since this must hold for all Z, we see that

dE(X) = A−1
N,X(V ) =⇒ V = AN,X(dE(X)). (2.28)

It is then obvious from the expansion of AN,X that Equation 2.9 is simply

Ẋ = −AN,X(dE(X)) = −gradgNE(X). (2.29)

Remark 2.2.3 (Infinite Depth Limit). AN,X can also be altered to give a clear infinite depth limit
(i.e. N → ∞). In particular, if we add a factor of 1

N in front, we find that

lim
N→∞

AN,X(Z) =

∫ 1

0

(
XXT

)1−t
Z(XTX)tdt. (2.30)
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The eigenvalues also have clear limits as well after including the adjustment factor.

lim
N→∞

1

N
λN
kl =

{
σ2
k−σ2

l

log σ2
k−log σ2

l
k ̸= l,

σ2
k k = l.

(2.31)

We will use the infinite depth limit often in numerical simulation to reduce the number of hyperpa-
rameters to study.

2.2.1 Riemannian Submersion

Recall the following important definitions from Riemannian geometry.

Definition 2.2.4 (Vertical and Horizontal Spaces). Let (M, g) and (N , h) be linked by a differ-
entiable map ϕ : M → N . Then, there exists a direct sum decomposition of the tangent space at
any point m ∈ M via the differential of ϕ.

TmM = kerDϕ[m] ⊕ (kerDϕ[m])⊥ = Vm ⊕Hm, (2.32)

where Vm and Hm denote the vertical and horizontal spaces at m respectively. A tangent vector
is vertical or horizontal if it lies completely within the respective space.

Definition 2.2.5 (Riemannian Submersion). Let (M, g) and (N , h) be two Riemannian manifolds.
A mapping ϕ : M → N is a Riemannian submersion iff ϕ satisfies the following.

1. ϕ is a smooth submersion (the differential Dϕ[m] at m ∈ M is surjective for all m).

2. The differential restricted to the horizontal space at m ∈ M is isometric for all m.

As it conveniently turns out, the ϕ mapping defined back in Equation 1.4 is a Riemannian
submersion. The upstairs manifold is M equipped with the natural metric ι induced from the
Frobenius norm as M is embedded in MN

d . The downstairs manifold is exactly (Md, g
N ), and gN is

exactly the metric obtained through submersion of ι. More generally, we have the following result.

Theorem 2.2.6 (ϕ Submersion, [Yu and Menon, 2024, Menon, 2024]). For all 1 ≤ r ≤ d, the
metric gN on Mr is exactly obtained from Riemannian submersion via the end-to-end product map
ϕ : Mr → Mr.

In the proof of this theorem, Yu and Menon [2024] compute the vertical and horizontal spaces
of ϕ by computing the differential ϕ∗. The formulas for the particular orthonormal basis vectors are
meticulously worked out in their work, but a key observation is that the orthonormal basis for the
horizontal space coincides with the eigenvectors in the diagonalization of AN,X (rank one matrices
of the form ukv

T
l where uk and vl are normal).

Lemma 2.2.7 (Orthonormal Basis for Horizontal Space, Yu and Menon [2024]). Let

M ∈ M,M = (QNΛQT
N−1, QN−1ΛQT

N−2, . . . , Q1ΛQT
0 ) (2.33)

so that M = ξ(Λ, QN , QN−1, . . . , Q1). Furthermore, let qp,i denote the ith column of Qp. Then,
define the following special elements of MN

d that will form the basis for HM as

lk =
(
lkN , lkN−1, . . . , l

k
1

)
, (2.34)

lks =
1√
N

qs,kq
T
s−1,k, (2.35)
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uk,l,0 =
(
uk,l,0
N , uk,l,0

N−1, . . . , u
k,l,0
1

)
(2.36)

uk,l,0
s = Ck,l

s qs,lq
T
s−1,k, (2.37)

and

uk,l,N =
(
uk,l,N
N , uk,l,N

N−1 , . . . , u
k,l,N
1

)
(2.38)

uk,l,N
s = Dk,l

s qs,kq
T
s−1,l, (2.39)

where Ck,l
s , Dk,l

s ∈ R are normalizing constants with s ∈ [N ].
The result is that (l,u0,uN ) where

l = {lk|1 ≤ k ≤ d}, (2.40)

u0 = {uk,l,0|1 ≤ k < l ≤ d}, (2.41)

uN = {uk,l,N |1 ≤ k < l ≤ d} (2.42)

form a basis for HM = (kerϕ∗[M])⊥.

The proofs of these important results are technical but straightforward so for brevity we refer
interested readers to Section 8 of Menon [2024].
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Chapter 3

Geodesics

3.1 Background

Given a Riemannian manifold (M, g), the geodesics (or shortest paths) are the fundamental geomet-
ric object to understanding the curvature of the space. We begin with an overview of their definition
and state an important result on the behavior of geodesics under Riemannian submersions. A good
reference is Do Carmo and Flaherty Francis [1992].

Definition 3.1.1 (Geodesic). A geodesic between A,B ∈ M on (M, g) is an extrema of the
action

A[x] =

∫ 1

0

gx(t)(ẋ(t), ẋ(t))dt (3.1)

over the set of paths

S = {x : [0, 1] → M|x(0) = A, x(1) = B, x ∈ C1([0, 1])}. (3.2)

In essence, the geodesic definition comes from defining the Lagrangian to be

L(x, ẋ) = gx(ẋ, ẋ), (3.3)

which is exactly the arc-length of x under the metric g. In this formulation (and more generally for
any Lagrangian), the minimizing x is known to satisfy the Euler-Lagrange equations (which are
equivalent to Newton’s laws of motion)

d

dt

∂L(x, ẋ)

∂ẋ
= −∂L(x, ẋ)

∂x
. (3.4)

The optimization can also be seen from a dual perspective, known as the Hamiltonian for-
mulation, and reveals another equivalent set of equations of motion. Given a Lagrangian L(x, ẋ)
over coordinates equipped with an inner product, the Hamiltonian is given from the Legendre
transform of L(x, ·) as

H(x, p) = sup
ẋ

(⟨p, ẋ⟩ − L(x, ẋ)). (3.5)
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Figure 3.1: Diagram of ϕ acting as a Riemannian submersion from M to Md and the respective
preservation of horizontal geodesics under ϕ (Theorem 3.1.2). This image is the core argument of
Theorem 3.4.2.

Differentiating the right hand side with respect to ẋ and setting equal to 0 gives

0 =
d

dẋ
(⟨p, ẋ⟩ − L(x, ẋ)) =⇒ p =

∂L

∂ẋ

when ẋ is maximizing, netting the change of variables formula. The corresponding canonical equa-
tions to the Euler-Lagrange equations are given as

ẋ = ∂pH(x, p), (3.6)

ṗ = −∂xH(x, p). (3.7)

3.1.1 Geodesics Under Submersion

In our problem, we have the unique structure given by ϕ and its role as a submersion mapping
(Theorem 2.2.6). We would like to leverage this structure when attempting to compute geodesics.
We have the following result on a specific case when submersions respect geodesics.

Theorem 3.1.2. Let (M, g) and (N , h) be Riemannian manifolds and ϕ : M → N be a Rieman-
nian submersion. Let x : [0, 1] → M be a geodesic between A,B ∈ M in the geometry (M, g) so
that x′(0) ∈ HA i.e. is horizontal. Then,

1. x′(t) is horizontal for all t ∈ [0, 1].

2. ϕ ◦ x is a geodesic in (N , h) between ϕ(A) and ϕ(B) and is the same length as x.

Theorem 3.1.2 is the core result that will allow us to obtain explicit formulas for the geodesics
when specific symmetries exist that result in horizontal straight lines in the upstairs manifold.
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We illustrate the procedure in Figure 3.1: as a preview, we will find two points connected by a
horizontal geodesic in the upstairs space that under the submersion map to the desired endpoints
in the downstairs geometry, and apply Theorem 3.1.2 to derive an explicit formula.

We are now ready to proceed with the computation of various geodesic equations and explicit
paths. To motivate our results in the DLN, we present two derivations of the explicit geodesics
in the classical Bures-Wasserstein geometry, a special case of the DLN. These arguments will be
extended to analogous computations in the DLN, giving rise to a general system of ODEs for general
geodesics and explicit formulas in a specific case. The first argument is novel but relies on a classical
mechanical computation after a change of variables into the Hamiltonian formulation. The second
argument relies on the preservation of horizontal geodesics under Riemannian submersions and offers
a more natural geometric perspective [Bhatia et al., 2019]. We will also present a characterization
of all straight lines that lie in the balanced manifold, reminiscent of confocal quadrics (Hilbert and
Cohn-Vossen [1952], pp. 25-27).

3.2 Bures Wasserstein Geometry

The Bures-Wasserstein (BW) geometry [Bhatia et al., 2019] is a particular special case of the general
DLN when N = 2 and W1 = WT

2 , and the upstairs space is only invertible matrices (nonzero
singular values). Notice then that the parameter space becomes GL(d) and the observable space Pd

of symmetric positive definite d× d matrices, as the parameter W ∈ GL(d) maps to the observable
space through

X = WWT ∈ Pd.

BW is still overparameterized: upstairs, we have d2 dimensions compared to only
(
d+1
2

)
dimensions

downstairs as X is symmetric.
The downstairs metric, now denoted gBW, at a point X ∈ Pd reduces to a very simple form,

given by

gBW : TXPd × TXPd → R (3.8)

(Z1, Z2) 7→ 1

2
Tr(ZT

1 L−1
X (Z2)), (3.9)

where L−1
X (Z) is the Lyapunov operator that maps Z to the matrix that solves

L−1
X (Z)X + XL−1

X (Z) = Z. (3.10)

Thus it is also clear that
LX(Y ) = XY + Y X. (3.11)

We will aim to compute the geodesics of the geometry (Pd, g
BW). The Lagrangian in this case is

given by (using capital letters for matrix paths)

L(X, Ẋ) =
1

2
Tr(ẊL−1

X (Ẋ)). (3.12)

We also quickly define an important quantity.

Definition 3.2.1 (Geometric Mean). Given two positive definite matrices A and B, the geometric
mean of A and B, denoted by A#B, is given by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2. (3.13)
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Lemma 3.2.2 (Geometric Mean Properties). We will use two key facts about the geometric median,
both of which can be proven directly from the definition.

1. A#B is the unique positive definite solution M to the Riccati Equation

B = MA−1M. (3.14)

2. A(A−1#B) = (AB)1/2 and (A−1#B)A = (BA)1/2.

We will prove the following theorem in two ways.

Theorem 3.2.3 (Geodesics on (Pd, g
BW)). The geodesic path X : [0, 1] → Pd between A,B ∈ Pd

in the BW geometry is given by

X(t) = t2B + (1 − t)2A + t(1 − t)
(

(AB)1/2 + (BA)1/2
)
. (3.15)

Proof 1 - Hamiltonian Formulation. To begin, recall that TXPd
∼= Symmd. Furthermore, for clar-

ity, denote Y = Ẋ. In order to construct the change of variable into Hamiltonian coordinates, we
must first compute DY [L(X,Y )](H) where H ∈ TXPd.

DY

[
1

2
Tr(Y TL−1

X (Y ))

]
(H) =

1

2
Tr(DY [Y TL−1

X (Y )](H))

=
1

2
Tr(HTL−1

X (Y ) + Y TL−1
X (H))

=
1

2
(gX(H,Y ) + gX(Y,H))

= Tr(L−1
X (Y )H) (3.16)

where the second to last equality holds because H and Y are in TXPd and the last equality follows
from the cyclic property of trace.

Thus, we obtain that P = L−1
X (Y ). Thus, we also have that Y = LX(P ). The advantage of

working in these dual coordinates now becomes clear: the Hamiltonian is much simpler than the
Lagrangian because of the explicit nature of LX compared to the implicit nature of L−1

X .
Now, we can compute the Hamiltonian using the cyclic property of trace and the definition of

P and LX as

H(X,P ) = Tr(PTLX(P )) − 1

2
Tr(LX(P )L−1

X (LX(P )))

=
1

2
Tr(PLX(P ))

= Tr(P 2X). (3.17)

We can now state the geodesic equations, which are now essentially trivial from the definition of
the Hamiltonian: {

Ẋ = LX(P ),

Ṗ = −P 2.
(3.18)
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We now find an exact formula for P . In particular, we see that

Ṗ = −P 2 =⇒ −P−1ṖP−1 = I

d

dt
(P−1) = I

P−1(t) = tI + P−1
0 . (3.19)

Thus, we conclude that P (t) = (tI + P−1
0 )−1. We can then factor out P−1

0 from the interior term,
revealing an innate structure of P (t) as a time derivative.

P (t) = (P−1
0 (tP0 + I))−1

= (tP0 + I)−1P0 (3.20)

=
d

dt
log(tP0 + I). (3.21)

Using this formula for P (t), we can push on to also derive the explicit formula for X(t). We must
now incorporate the Dirichlet boundary conditions of the geodesic:

X0 = A and X1 = B, (3.22)

where A,B ∈ Pn are the endpoints of the geodesic.
We can expand the first differential equation as

Ẋ = X(t)P (t) + P (t)X(t). (3.23)

This equation is both linear and non-autonomous, as it depends on X(0) and Ẋ(0) through P (t),
and is reminiscent of the Lax equation

Ẋ = [X,P ] = XP − PX. (3.24)

These relationships and the linear of this equation involving both left and right actions motivates
the following ansatz for the solution form of X:

X(t) = eC(t)X0e
D(t). (3.25)

Plugging in this guess into the original ODE in order to solve for C(t) and D(t) gives that

Ċ(t) = Ḋ(t) = P (t), (3.26)

so that via matching coefficients both C(t) and D(t) are
∫ t

0
P (s)ds, confirming that our guess is

indeed the unique solution to the ODE. Now, using that P (t) = d
dt log(tP0 + I), we have that then

C(t) = D(t) =

∫ t

0

d

ds
log(sP0 + I)ds (3.27)

= log(tP0 + I) − log(I) (3.28)

= log(tP0 + I). (3.29)
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Returning to our solution form thus leaves just

X(t) = exp{log(tP0 + I)}X0 exp{log(tP0 + I)}
= (tP0 + I)X0(tP0 + I)

= (tP0 + I)A(tP0 + I). (3.30)

Now, we can apply the final unused condition that X1 = B to find the value for P0. Plugging this
into X gives that

B = (P0 + I)A(P0 + I), (3.31)

which from Lemma 3.2.2 implies that

P0 = (A−1#B) − I. (3.32)

Finally, substituting this into our solution formula for X(t), we conclude that

X(t) = (t((A−1#B) − I) + I)A(t((A−1#B) − I) + I) (3.33)

= (t(A−1#B) + (1 − t)I)A(t(A−1#B) + (1 − t)I) (3.34)

= t2B + (1 − t)2A + t(1 − t)((A−1#B)A + A(A−1#B)) (3.35)

= t2B + (1 − t)2A + t(1 − t)
(

(AB)1/2 + (BA)1/2
)

(3.36)

as desired.

Proof 2 - Riemannian Submersion. This proof is outlined in detail in Section 4 of Bhatia et al.
[2019]. The key steps are

1. Compute the vertical and horizontal spaces of the mapping π : GL(d) → Pd.

2. Show that the line between A
1
2 and B

1
2U is horizontal and is a valid line through GL(d),

where U is the orthogonal polar factor of B
1
2A

1
2 . Since Md is a flat space, the line is also the

geodesic between A
1
2 and B

1
2U .

3. Apply Theorem 3.1.2 to derive the explicit form of geodesics between π
(
A

1
2

)
= A and

π
(
B

1
2U
)

= B.

3.3 General Geodesic Equation

Much like in the BW case, a quick computation reveals that H(X,P ) on the manifold (Md, g
N ) is

exactly

H(X,P ) =
1

2
Tr
(
PTA−1

N,X(P )
)
. (3.37)

Using this Hamiltonian formulation, we can obtain similar equations in the general DLN case on
the manifold (Md, g

N ). However, unfortunately we are unable to extract explicit solutions to this
set of ODEs.
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We first recall functional calculus on symmetric matrices (reference: [Bhatia, 2009]): if S =
QΛQT is a symmetric matrix and f : R → R is a 1D functional, f can be extended to the
symmetric matrices as (abusing notation)

f(S) = Qf(Λ)QT = Qdiag(f(λ1), f(λ2), . . . , f(λd))QT . (3.38)

Then, the differential of f(S) at S evaluated in the direction Z is exactly

Df [S](Z) = Q
(
f [1](Λ) ◦

[
QTZQ

])
QT (3.39)

where f [1] is the special matrix given elementwise by the conditional

f [1](Λ)ij =

{
f(λi)−f(λj)

λi−λj
i ̸= j

limλi→λj

f(λi)−f(λj)
λi−λj

i = j.
(3.40)

Thus, we have the following lemma.

Lemma 3.3.1 (Derivatives of (XXT )α). Let X = UΣV T be the singular value decomposition of
X i.e. U, V ∈ Od and Σ is a diagonal matrix. Then,

DX

[(
XXT

)α]
[Z] = U

[
f [1]
α

(
Σ2
)
◦
(

ΣZ̃T + Z̃Σ
)]

UT . (3.41)

DX

[(
XTX

)α]
[Z] = V

[
f [1]
α

(
Σ2
)
◦
(

ΣZ̃ + Z̃T Σ
)]

V T . (3.42)

where Z̃ = UTZV and (
f [1]
α (Σ2)

)
ij

=


σ2α
i −σ2α

j

σ2
i−σ2

j
i ̸= j,

limσ2
i→σ2

j

σ2α
i −σ2α

j

σ2
i−σ2

j
i = j.

(3.43)

Proof. We write out the proof for the first result - the second is similar.
We notice that XXT is a symmetric matrix with diagonalization UΣ2UT . Thus, we apply

functional calculus along with the chain rule to find that

DX

[(
XXT

)α]
(Z) = U

[
f [1]
α

(
Σ2
)
◦
(
UT

(
DX

[
XXT

]
(Z)
)
U
)]

UT . (3.44)

Clearly, we know that
DX

[
XXT

]
(Z) = XZT + ZXT . (3.45)

Rewriting Z as Z̃ in the singular vector coordinates via the transformation Z = UZ̃V T nets the
final simplification that gives the form in the Lemma statement.

Theorem 3.3.2 (DLN Geodesic Equations in Hamiltonian Form.). Let f
[1]
α (Λ) denote the matrix

given by Equation 3.40 with f(x) = xα. The Hamiltonian equations of motion for geodesics on
(Md, g

N ) are given by{
Ẋ = AN,X(P ),

Ṗ = −U
(∑N

p=1

[
f
[1]
N−p
N

(
Σ2
)
◦M1

]
Σ + Σ

[
f
[1]
p−1
N

(
Σ2
)
◦M2

])
V T ,

(3.46)
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where M1 and M2 are the symmetric matrices

M1 = (UTPV )Σ
2(p−1)

N (UTPV )T (3.47)

M2 = (UTPV )T Σ
2(N−p)

N (UTPV ). (3.48)

Proof. This first equation follows from exactly the same computation as the BW case but with
L−1 replaced with A−1

N,X . So the only nontrivial equation is in the second equation. We begin by
applying Lemma 3.3.1 to compute DX [H(X,P )](Z).

DX [H(X,P )](Z) =
1

2

N∑
p=1

Tr (TU + TV ) , (3.49)

TU = PTU
[
f
[1]
N−p
N

(
Σ2
)
◦
(

ΣZ̃T + Z̃Σ
)]

UTPV Σ
2(p−1)

N V T , (3.50)

TV = PTUΣ
2(N−p)

N UTPV
[
f
[1]
p−1
N

(
Σ2
)
◦
(

ΣZ̃ + Z̃T Σ
)]

V T . (3.51)

Now, to clean up further, we also write P in terms of the singular value coordinates.

P = UP̃V T ⇐⇒ UTPV = P̃ . (3.52)

Plugging this in cleans up the equation, leaving just

TU = P̃T
[
f
[1]
N−p
N

(
Σ2
)
◦
(

ΣZ̃T + Z̃Σ
)]

P̃Σ
2(p−1)

N (3.53)

TV = P̃T Σ
2(N−p)

N P̃
[
f
[1]
p−1
N

(
Σ2
)
◦
(

ΣZ̃ + Z̃T Σ
)]

. (3.54)

Lemma 3.3.3. Let K and M be symmetric matrices, Σ be a diagonal matrix, and A be an arbitrary
matrix. Then, we have the following identities.

Tr([K ◦ (ΣAT )]M) = Tr([K ◦ (AΣ)]M) = Tr(Σ[K ◦M ]A), (3.55)

Tr([K ◦ (ΣA)]M) = Tr([K ◦ (AT Σ)]M) = Tr([K ◦M ]ΣA). (3.56)

Proof. 1. Let’s first prove that the first expression is equal to the last. We will approach by
expanding into coordinates, following Einstein notation convention where repeated indices
are summed.

Tr([K ◦ (ΣAT )]M) = Kijσi(A
T )ijMji

= σiKijMjiAji

= σiKijMijAji

= Tr(Σ[K ◦M ]A). (3.57)

Similarly, we can prove the equality of the second expression and the third expression using
the symmetry of K.

Tr([K ◦ (AΣ)]M) = KijAijσjMji

= σjKijMjiAij

= σjKjiMjiAij

= Tr(Σ[K ◦M ]A). (3.58)
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2. These follow from extremely similar steps to the proofs in part 1.

Applying this lemma to eq. 3.53, where K = f
[1]
α (Σ2) for α = N−p

N and α = p−1
N (it is easy to

see from definition that these are symmetric) and M = P̃T Σ
2(N−p)

N P̃ and P̃Σ
2(p−1)

N P̃T , Σ = Σ, and
A = Z̃, we can clean up even further. For clarity, let

M1 = P̃Σ
2(p−1)

N P̃T (3.59)

M2 = P̃T Σ
2(N−p)

N P̃ . (3.60)

Then, we have that

DX [H(X,P )](Z) =
1

2

N∑
p=1

Tr
(

2Σ
[
f
[1]
N−p
N

(
Σ2
)
◦M1

]
Z̃ + 2

[
f
[1]
p−1
N

(
Σ2
)
◦M2

]
ΣZ̃
)

(3.61)

=

N∑
p=1

Tr
((

Σ
[
f
[1]
N−p
N

(
Σ2
)
◦M1

]
+
[
f
[1]
p−1
N

(
Σ2
)
◦M2

]
Σ
)
Z̃
)

(3.62)

= Tr

(
V

N∑
p=1

(
Σ
[
f
[1]
N−p
N

(
Σ2
)
◦M1

]
+
[
f
[1]
p−1
N

(
Σ2
)
◦M2

]
Σ
)
UTZ

)
(3.63)

This lets us conclude that the second canonical equation in the Hamiltonian formulation is

Ṗ = −U

N∑
p=1

([
f
[1]
N−p
N

(
Σ2
)
◦M1

]
Σ + Σ

[
f
[1]
p−1
N

(
Σ2
)
◦M2

])
V T . (3.64)

However, this final form is not particularly amenable to explicit analysis, despite the obvious
commutator structure and relation to the singular vector coordinates U and V . Thus, we turn to
special cases, where we will be able to find explicit formulas.

3.4 Special Cases of DLN

Since we were unable to get explicit solutions for the geodesics in the general case, we turn to char-
acterizing special cases where explicit formulas are obtainable. We begin with a characterization of
straight lines on (M, ι) through both a simple sufficient condition on the endpoints and a necessary
and sufficient skew-symmetry condition.

Lemma 3.4.1 (Characterization of Straight Lines on M.). Let A = ξ(Λ, QN , . . . , Q0) and B =
ξ(Λ̃, Q̃N , . . . , Q̃0) be the endpoints of interest. Let

Qp = Q̃T
p Qp ∈ Od. (3.65)

Then, the line
W(t) = (1 − t)A + tB (3.66)

is balanced for all t ∈ [0, 1]:
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1. if Qp+1 = Qp−1 for all 1 ≤ p ≤ N − 1.

2. if and only if
(Qp+1 −Qp−1)MT (3.67)

are skew symmetric, where
M = Λ̃−1QpΛ (3.68)

for all 1 ≤ p ≤ N − 1.

Proof. We wish to find the condition that W(t) = (1 − t)A + tB ∈ M for all t ∈ (0, 1) (it is by
definition balanced at the endpoints). Fix p ∈ {1, 2, . . . , N − 1}. We would like to show that

Wp+1(t)TWp+1(t) = Wp(t)Wp(t)T , (3.69)

where Wp(t) = (1− t)Wp(0) + tWp(1) for all p. Expanding the algebra out and using that Wp(0) =
Ap and Wp(1) = Bp are both in the balanced manifold, we find that W(t) is in the balanced
manifold for all t ∈ (0, 1) if and only if

BT
p+1Ap+1 + AT

p+1Bp+1 = BpA
T
p + ApB

T
p . (3.70)

Now, we use the parameterizations of A and B to expand into the orthogonal matrix components.

Q̃pΛ̃(Q̃T
p+1Qp+1)ΛQT

p + QpΛ(QT
p+1Q̃p+1)Λ̃Q̃T

p

= Q̃pΛ̃(Q̃T
p−1Qp−1)ΛQT

p + QpΛ(QT
p−1Q̃p−1)Λ̃Q̃T

p .
(3.71)

The sufficient condition is obvious in this form.
We can push further for a cleaner necessary condition by left and right multiplying by Q̃T and

Q respectively:

Λ̃(Qp+1 −Qp−1)Λ = −QpΛ(Qp+1 −Qp−1)T Λ̃Qp.

Then, it is a simple rewriting in terms of M to get the final condition:

Qp+1 −Qp−1 = −M(Qp+1 −Qp−1)TM−T . (3.72)

(Qp+1 −Qp−1)MT = −M(Qp+1 −Qp−1)T . (3.73)

The structure demonstrates that the difference

Qp+1 −Qp−1 (3.74)

behaves like a skew symmetric matrix after changing into coordinates given by M (or essentially
Qp).

The importance of straight lines is that they are automatically geodesics on (M, ι) because ι
is induced from the embedding of M in the flat ambient space MN

d . Now, we can put the results
together along with Theorem 3.1.2 to get a set of explicit geodesics on the downstairs space. The
following argument is depicted in Figure 3.1.
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Theorem 3.4.2 (Explicit DLN Geodesics for Rotationally Related Endpoints.). Let A,B ∈ Md be
matrices such that A = UΣV T and B = Ũ Σ̃Ṽ T are the singular value decompositions. Furthermore,
define ℓ : Md ×Md → Md as the linear interpolation between its two arguments:

(X,Y ) 7→ (1 − t)X + tY. (3.75)

Then, if there exists Q ∈ Od such that Ũ = UQ and Ṽ = V Q,

1. there exists A ∈ ϕ−1(A) and B ∈ ϕ−1(B) such that γ(t) = ℓ(A,B) is a geodesic in (M, ι).

2. the geodesic in (Md, g
N ) between A and B is given by

γ(t) = ℓ
(
UΣ

1
N , Ũ Σ̃

1
N QT

)
ℓ
(

Σ
1
N , QΣ̃

1
N QT

)N−2

ℓ
(

Σ
1
N V T , QΣ̃

1
N Ṽ T

)
. (3.76)

Proof. First, let’s outline the proof. To prove (1), it is sufficient to construct A ∈ ϕ−1(A) ⊆ M
and B ∈ ϕ−1(B) ⊆ M such that

γ(t) = ℓ(A,B) ∈ M for all t ∈ [0, 1] (3.77)

because ι is induced by the flat Frobenius metric. Then, we will show that γ′(t) is horizontal at
t = 0 by proving that

d

dt
((1 − t)A + tB) = −A + B ∈ HA (3.78)

or that equivalently A ∈ HA and B ∈ HA because ϕ∗ is linear. Thus, by Theorem 3.1.2, it follows
that ϕ ◦γ is a geodesic in the downstairs space between ϕ(A) and ϕ(B), giving the explicit formula
in (2).

Parameterizations for A and B. Consider the following parameterization for A:

A = ξ
(

Σ
1
N , U, I, . . . , I, V T

)
(3.79)

where ξ is the map given in Equation 2.7 since A ∈ M. Clearly, ϕ(A) = A. Furthermore, Lemma
2.2.7 gives a set of orthonormal basis vectors for the horizontal space HA:

lks =
1√
N


uke

T
k s = N

ekv
T
k s = 1

eke
T
k o/w

,

uk,l,0
s = Ck,l

s


ule

T
k s = N

elv
T
k s = 1

ele
T
k o/w

,

uk,l,0
s = Dk,l

s


uke

T
l s = N

ekv
T
l s = 1

eke
T
l o/w

.

(3.80)

24



So, note that checking if a matrix X = ξ(Λ, QN , . . . , Q0) ∈ M is in the span of l, uk,l,0, and uk,l,N

is equivalent to finding a set of coefficients α ∈ Md such that

Uα = QNΛQT
N−1

α = Qp+1ΛQT
p , 1 ≤ p ≤ N − 2

αV T = Q1ΛQT
0 .

(3.81)

It is immediately obvious that α = Σ
1
N gives that A ∈ HA.

Now, also consider

B = ξ
(

Σ̃
1
N , Ũ , Q, . . . , Q, Ṽ T

)
, (3.82)

where Q = UT Ũ = V T Ṽ by assumption. Clearly, ϕ(B) = B. Furthermore, A and B satisfy the
sufficient condition of Lemma 3.4.1 since QT = ŨTU = Ṽ TV and Qp is constant for all p. Thus,
the line ℓ(A,B) is indeed the geodesic between A and B in (M, ι).

γ′(0) is Horizontal. We have already shown that A is in HA. Thus, in order to show the line is
horizontal at t = 0, we need to show that B ∈ HA as well. We thus return to solving the system
of equations in Equation 3.81, which under the parameterization of B collapses to

Uα = Ũ Σ̃
1
N QT , (3.83)

α = QΣ̃
1
N QT , (3.84)

αV T = QΣ̃
1
N Ṽ T , (3.85)

and has the obvious solution given by the middle equations of α = QΣ̃
1
N QT which is consistent

with the others. Thus, B ∈ HA.
Since we have shown that both B and A are in HA and that the geodesic linking them is a

straight line, it follows from Equation 3.78 that γ′(0) is horizontal. Applying Theorem 3.1.2, we
conclude that ϕ ◦ γ is a geodesic in (Md, g

N ) of the same length as γ. The explicit formula comes
directly from applying ϕ to γ between our parameterized A and B.

Corollary 3.4.2.1 (Diagonal A and B). When A and B are diagonal, we have that the geodesic
is

γ(t) = ℓ
(
A1/N , B1/N

)N
=

N∑
p=0

(
N

p

)
(1 − t)ptN−pAp/NB(N−p)/N .

(3.86)

Proof. Apply the theorem and expand the geodesic formula using that diagonal matrices commute.

Remark 3.4.3. Other examples of when A and B satisfy this right-left rotation condition is if they
are both symmetric or if they have the same singular vectors (Q = Id).
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Chapter 4

Numerical Simulations

4.1 Balanced Flow Simulation

We aim to simulate the flow in Equation 2.9

Ẋ = −
N∑

p=1

(
XXT

)N−p
N dE(X)

(
XTX

) p−1
N . (4.1)

Numerical schemes require a computation of the tangent vector corresponding to Ẋ at every integra-
tion step. However, naive recomputation of the right hand side at every iteration of the integration
would involve recomputing the SVD of X to compute the fractional powers of XXT and XTX. This
quickly becomes prohibitively expensive as d increases. Furthermore the summation includes O(N)
terms, which also becomes expensive as N increases and we cannot explicitly work with the N → ∞
case. Throughout our prior computations, we observed that the seemingly “natural” coordinate
system for the balanced manifold flow is in the SVD coordinates, as seen in the parameterization
in Equation 2.7 and Theorems 2.1.2, 3.3.2, and 3.4.2 all placing emphasis on the SVD coordinates
through assumptions or statements. This gives us the insight that the system should be evolved
through the singular value coordinates U(t), Σ(t), and V (t).

4.1.1 Simulation Methodology

In order to perform the desired coordinate change, we must first understand how the respective
components of the SVD change along a path X(t).

Lemma 4.1.1 (SVD Differentiation, Cohen et al. [2023]). Suppose X(t) = U(t)Σ(t)V (t)T and
assume that σi(t) ̸= σj(t) for all t. Then, the time derivatives of the individual components can be
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computed as

σ̇i(t) = uT
i (t)Ẋ(t)vi(t), (4.2)

u̇i(t) =
∑
j ̸=i

1

σ2
i − σ2

j

uT
j (t)(Ẋ(t)XT (t) + X(t)ẊT (t))ui(t)uj(t), (4.3)

v̇i(t) =
∑
j ̸=i

1

σ2
i − σ2

j

vTj (t)(ẊT (t)X(t) + XT (t)Ẋ(t))vi(t)vj(t). (4.4)

Proof. Fix 1 ≤ i ≤ d. Firstly, notice that

UTU = I =⇒ UT U̇ ∈ Ad, (4.5)

which implies that uT
i u̇i = 0 (similarly for vi and v̇i). Thus, we know that

u̇i =
∑
j ̸=i

cijuj , v̇i =
∑
j ̸=i

dijvj . (4.6)

Now, consider differentiating the equation

X(t)vi(t) = σi(t)ui(t). (4.7)

This gives
Ẋ(t)vi(t) + X(t)v̇i(t) = σ̇i(t)ui(t) + σi(t)u̇i(t). (4.8)

By left multiplying by uT
i (t) and using the orthogonality properties and the expansions from equa-

tion (4.6), we find that this implies

uT
i (t)Ẋ(t)vi(t) = σ̇i(t). (4.9)

Now, let’s compute u̇i(t) and v̇i(t). We can do this by considering differentiating the identities

X(t)XT (t)ui(t) = σ2
i (t)ui(t), (4.10)

XT (t)X(t)vi(t) = σ2
i (t)vi(t). (4.11)

We will do the first expression and the second is exactly the same. In particular, we get

(Ẋ(t)XT (t) + X(t)ẊT (t))ui(t) + X(t)XT (t)u̇i(t) =

(
d

dt
σ2
i (t)

)
ui(t) + σ2

i (t)u̇i(t). (4.12)

Multiplying this time by uT
j where j ̸= i and plugging in the expansions from equation (4.6),

uT
j (t)(Ẋ(t)XT (t) + X(t)ẊT (t))ui(t) + σ2

j (t)cij = σ2
i (t)cij . (4.13)

Collecting terms gives that

cij =
1

σ2
i − σ2

j

uT
j (t)(Ẋ(t)XT (t) + X(t)ẊT (t))ui(t). (4.14)

Similarly we find that

dij =
1

σ2
i − σ2

j

vTj (t)(ẊT (t)X(t) + XT (t)Ẋ(t))vi(t). (4.15)

These can be plugged into equation (4.6) to get u̇(t).
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We can now use Lemma 4.1.1 to change coordinates and derive the corresponding flows for U(t),
Σ(t), and V (t).

Lemma 4.1.2 (Balanced Flow in SVD Coordinates, Cohen et al. [2023]). Let s(M) = M − MT

and let

LN (Σ)ij =


λN
ij

σ2
i−σ2

j
i ̸= j

0 i = j
(4.16)

where λN
ij is the eigenvalue for the eigenvector uiv

T
j of AN,X . Then,

U̇ = Us
(
(LN (Σ)Σ) ◦

(
UT dE(X)V

))
(4.17)

Σ̇ = −Σ2−2/Ndiag
(
UT dE(X)V

)
(4.18)

V̇ = V s
(
(ΣLN (Σ)) ◦

(
UT dE(X)V

))
(4.19)

Remark 4.1.3. λN
ij can come from any of the versions of AN,X : infinite depth or finite depth

with/without 1
N normalization. In our numerical experiments, we will largely use the infinite depth

limit for simplicity.

Proof. These equations can be verified by simply plugging in the Ẋ dynamics from Equation 2.9
into the equations from Lemma 4.1.1 and cleaning up using the antisymmetric projection s.

Corollary 4.1.3.1. Assume X0 diagonal and E(X) depends only on the singular values of X.
Then, for each i, we have that

σ̇i = −σ
2−2/N
i ∂σiE(X) (4.20)

and the matrix X remains diagonal.

By integrating the flow in the above lemma instead of the naive flow in Equation 2.9, we
reduce the number of SVD calls from 1 every iteration to just 1 at initialization. Furthermore, the
complexity no longer depends on the depth, as previous we would have to compute a summation∑N

p=1. We integrate the flow using RK45 [Dormand and Prince, 1980].

4.2 Low Rank Attraction

Much of this section replicates or lightly builds on results from Cohen et al. [2023] and Gunasekar
et al. [2017]. In specific situations, Cohen et al. [2023] observed a low rank attraction phe-
nomenon, or that solutions to the flow in Equation 2.9 would tend to be biased toward low rank
solutions. Gunasekar et al. [2017] found the same phenomenon in a more general energy setup but
only restricted to the BW geometry, even characterizing the solution in a special energy setup as
the solution minimizing the nuclear norm. As a simple demonstration of this phenomenon, consider
the diagonal matrix completion energy defined in d = 2 as

E(X) = (X11 − 1)2 + (X22 − 1)2. (4.21)

The set of rank-1 minimizers of E are given by matrices of the form

X =

[
X11 X12

X21 X22

]
=

[
1 α
1
α 1

]
. (4.22)
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Cohen et al. [2023] observe an implicit attraction to this particular set of minimizers, especially
when the initial conditions were small. Consider X0 with elements drawn from N (0, 0.012) in the
infinite depth case. We can plot the resulting X12 and X21 distributions (Figure 4.1a), observing
concentration of measure around the expected low rank hyperbola X21 = 1

X12
for various initial

conditions drawn from N (0, 0.012).
However, a more important question is how this low rank attraction occurs. The matrix must

still be full rank, but it is becoming effectively low rank. Therefore, the singular value distribution
is becoming skewed, but is it because lower singular values are decreasing or larger singular values
increasing? In Figure 4.1b we plot the singular value dynamics for the exact same energy (diagonal
matrix completion) but in d = 5 with initial condition drawn from N (0, 0.0012). We see a clear
picture: the small singular values are “lazy” and largely don’t move. Instead, the top singular value
is moved the most by the energy, meaning the skew in the singular value decomposition is coming
from the largest singular value moving up.

Furthermore, this observation implies that as variance of the initial conditions goes to 0, we will
observe an increasingly strong low rank attraction effect in the limit as t → ∞, because the lowest
singular values will become smaller yet the dynamics will still be dominated by the top singular
value(s). This is exactly what Gunasekar et al. [2017] find: they find that in order to observe strong
low rank attraction effects, it is important to closely simulate the gradient flow (which we do using
higher order methods) and begin the initialization “close enough” to 0.

Effective Rank Dynamics. We would like some method to quantify “singular value distribution
skew” as a low “effective” rank. That is the role of the following definition:

Definition 4.2.1 (Effective Rank). Let {σi}di=1 be the singular values and {si}di=1 denote the
normalized singular values σi∑d

i=1 σi
. Then, the effective rank is defined as

exp

(
−

d∑
i=1

si log si

)
. (4.23)

Suppose we draw initial conditions from N (0, 1
d ), so that all eigenvalues are approximately unit

and the initialization is more principled. In this case, the dynamics of effective rank are illuminating:
for various d’s, we observe a drastic gap between the distribution of initial effective ranks and final
effective ranks (Figure 4.2), concretely quantifying the low rank phenomenon from earlier. The
effect is also robust across various dimensions, indicating the attraction does not occur just in small
dimensions.

Rank 1 Attraction Requires Small Initialization. As suspected, we also find a dependence of
the low rank attraction on the variance of the initialization. It turns out that the smaller the variance
is, the “stronger” the implicit regularization is, in the limit pushing all matrices to effectively rank
1. We simulate the effective rank dynamics for infinite depth diagonal matrix completion similar to
Figure 4.2 but vary the initialization variance instead of the dimension d. In Figure 4.3, we observe
that as σ2 → 0, the regularization becomes stronger and the final converged solutions essentially all
become rank 1. This supports conjectured results from Gunasekar et al. [2017] on the importance
of initialization in observing the low rank attraction effects.
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Figure 4.1: (a) Final values of X12 and X21 for d = 2. The converged solutions clearly concentrate
around the low rank hyperbola X21 = 1

X12
. (b) Singular value dynamics for example run with

d = 5. We see that the rank attraction is because the top singular values move upward significantly
relative to the other singular values. Initial condition was drawn from N (0, 0.0012).
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(b) d = 25
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Figure 4.2: (a)-(c): Infinite depth effective rank dynamics for various dimensionalities for 200 initial
seeds. (d): Mean (over 50 initializations drawn with Xij ∼ N (0, 1/d)) limiting rank vs. depth under
the infinite depth flow. We see a clear linear scaling with a slope of around 3/5, though we do not
have theoretical results.
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Figure 4.3: (Left) Effective rank dynamics for different initialization variances when d = 25 and
N = ∞. (Right) Violin plot of effective rank distribution of solutions at T = 100 as a function of
the standard deviation of the initialization.

Arbitrary Matrix Completion. Finally, zooming out a bit, we can notice that Equation 4.21
is a simple case of a more general matrix completion problem. We can consider a label matrix ℓ
and index set I, and the energy is defined as

E(X) =
1

2

∑
(i,j)∈I

(Xij − ℓij)
2. (4.24)

The derivative matrix is clearly

∂XE(X)ij = 1(i,j)∈I(Xij − ℓij). (4.25)

Now, let’s fix d = 10 and remain in the infinite depth situation. We want to more deeply study
how this phenomenon is related to the sparsity of the label matrix i.e. |I|. In diagonal matrix
completion, we mask d elements to complete. What if we masked more or less - would the low rank
attraction phenomenon become more or less pronounced?

To investigate this problem, we randomly generate various label matrices with fixed sparsity K
and uniformly random labels ℓij in the interval [−2, 2]. We conduct 50 runs of each label matrix
and compute the mean effective rank at convergence. We then plot the distribution of these mean
effective ranks, where the distribution is over randomly sampled label matrices with fixed sparsity.

In Figure 4.4, we find a U shaped pattern as a function of sparsities K = [1, 10, 25, 50, 99] in the
distribution of mean end effective rank - when very few elements or almost all elements are masked,
the final effective rank tends to not change much. Otherwise, we observe low rank attraction in the
middle region. This observation intuitively makes sense: if very few elements are being masked,
most elements in the matrix will not be updated, so the effective rank will be similar to initialization.
If almost all elements are being masked, then the effective rank will be similar to the label matrix,
which in our case is almost always full rank. Otherwise, there is more freedom to “choose,” leading
us to observe implicit regularization.
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Figure 4.4: Distributions (over randomly drawn label matrices) of mean initial and end effective
rank for various sparsities at d = 10 and the same initial conditions. We find a U-shaped pattern
as sparsity increases.

4.3 Regularization by Entropy

So far, our numerics have focused solely on the downstairs flow without consideration for the upstairs
space. However, it turns out that the upstairs space can introduce interesting modifications to the
class of energy functions we can consider. The geometric intuition is to consider a definition of the
volume of the group sitting above each point X ∈ Md.

Formally, let FX denote the preimage fiber above a value X ∈ Md (Equation 2.15). Then, the
volume at each point X gives a sense of how “large” the upstairs fiber FX is or, in the language of
physics, how many microstates are associated with each observable/macrostate X. If X ∈ Md, then
we know from the parameterization in Equation 2.7 that above each point X sits an orthogonal
group ON−1

d (let this be denoted OX). One can compute [Menon, 2024] the volume of OX as

vol (OX) ∝
∏

1≤j<k≤d

√√√√ σ2
j − σ2

k

σ
2/N
j − σ

2/N
k

. (4.26)

Normally, the log of the volume is considered, giving the entropy SN (X)

SN (X) = log vol(OX) ∝
∑

1≤j<k≤d

1

2
log

(
σ2
j − σ2

k

σ
2/N
j − σ

2/N
k

)
. (4.27)

This also gives the infinite depth limit

S∞(X) ∝
∑

1≤j<k≤d

1

2
log

(
σ2
j − σ2

k

log σ2
j − log σ2

k

)
. (4.28)
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Remark 4.3.1. These log volumes can also be understood as ratios of Vandermonde determinants.
It can be shown that

S∞(X) = log

√
van(Σ2)

van(log Σ2)
, (4.29)

where if A = diag(a1, . . . , ad), van(A) is the determinant of the matrix
1 1 . . . 1
a1 a2 . . . ad
a21 a22 . . . a2d
...

...

ad−1
1 ad−1

2 . . . ad−1
d

 . (4.30)

These forms have deep connections to random matrix theory and this perspective should be explored
further in future work.

Intuitively, this log volume is large when the singular values are very far apart and small when
the singular values are all the same (one can minimize just this energy and observe this behavior).
Cohen et al. [2023] noted that the rank 1 hyperbolas we observed in Figure 4.1a are exactly the high
volume regions of the space. This observation inspires using the volume as a regularizer. However,
we need to be careful to confirm some important properties. As further intuition on the nature
of the log volume, we note the following properties of the entropy: a scaling identity, the first
derivatives, and the strict concavity of S with respect to Σ.

Lemma 4.3.2 (Scaling of S(X)). For a ∈ R, we have that

SN (aX) =

(
d

2

)(
1 − 1

N

)
log a + SN (X), (4.31)

S∞(aX) =

(
d

2

)
log a + S∞(X). (4.32)

Proof. These identities can be verified by direct computation with log rules. The main observation
is that the singular values of aX are |a|σi for i ∈ {1, 2, . . . , d}. We will do S∞ - the proof for SN is
the same.

S∞(aX) =
∑

1≤i<j≤d

1

2
log

(
(aσi)

2 − (aσj)
2

log(aσi)2 − log(aσj)2

)
(4.33)

=
∑

1≤i<j≤d

1

2
log a2 + S∞(X) (4.34)

=

(
d

2

)
log a + S∞(X). (4.35)

Thus, we can always make SN (X) or S∞(X) arbitrarily large by scaling the matrix and singular
values.
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Lemma 4.3.3 (Derivative of Entropy).

∂SN

∂σi
=
∑
j ̸=i

σi

σ2
i − σ2

j

− σ
2−N
N

N
(
σ

2
N
i − σ

2
N
j

) , (4.36)

∂S∞

∂σi
=
∑
j ̸=i

σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

. (4.37)

Proof. Again, we will prove the result just for S∞: SN is largely the same. First, by log rules, we
know that

S∞(X) ∝
∑

1≤j<k≤d

1

2
log(σ2

j − σ2
k) − 1

2
log(log σ2

j − log σ2
k). (4.38)

We can just directly differentiate the two terms separately, “selecting” out the terms in the sum-
mation that depend on σi.∑

1≤j<k≤d

∂

∂σi

1

2
log(σ2

j − σ2
k) =

1

2

∑
1≤j<i

−2σi

σ2
j − σ2

i

+
1

2

∑
i<k≤d

2σi

σ2
i − σ2

k

(4.39)

=
∑
j ̸=i

σi

σ2
i − σ2

j

. (4.40)

∑
1≤j<k≤d

∂

∂σi

1

2
log(log σ2

j − log σ2
k) =

1

2

∑
1≤j<i

−2σi/σ
2
i

log σ2
j − log σ2

i

+
1

2

∑
i<k≤d

2σi/σ
2
i

log σ2
i − log σ2

k

(4.41)

=
∑
j ̸=i

σ−1
i

log σ2
i − log σ2

j

. (4.42)

Finally, differencing these two terms gives the desired derivative form.

We now recall some important theorems from linear algebra as sufficient properties to determine
if matrices are positive definite. The following results, unless otherwise specified, are proved on S∞
but are also true for SN .

Lemma 4.3.4 (Positive Definite Diagonally Dominant Condition). Let A be a d × d symmetric
matrix. If

1. Aii > 0 for all 1 ≤ i ≤ d and

2. Aii >
∑

j ̸=i |Aij |,

Then, A is positive definite.

Corollary 4.3.4.1. Again, let A be a d× d symmmetric matrix. If

1. Aii < 0 for all 1 ≤ i ≤ d and

2. |Aii| >
∑

j ̸=i |Aij |,

Then, A is negative definite.
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Proof. These results can be argued from the Gershgorin circle theorem [Horn and Johnson, 2012],

which states that every eigenvalue of a matrix A lies in a Gershgorin disc D
(
Aii,

∑
j ̸=i Aij

)
.

Lemma 4.3.5 (S∞ Concavity). S∞ is strictly concave in σ.

Proof. For brevity, we omit the computation of many of the final inequalities that determine the
signs of quantities. They all are the same proof - reparameterize in terms of u = log(σi/σj) and
argue that the inequality holds when u > 0 using the inequalities ex ≥ 1 + x and e−x ≤ 1 for all
x ∈ R.

We’ve already computed first derivatives in Lemma 4.3.3, so we just differentiate further and
prove that the Hessian is negative definite. Recall that we assume σi ̸= σj for all 1 ≤ i, j ≤ d.
Then, we can compute the next derivative as

∂2S∞

∂σ2
i

=
∑
j ̸=i

(σ2
i − σ2

j ) − σi(2σi)

(σ2
i − σ2

j )2
− −σ−2

i (log(σi/σj)) − σ−1
i σ−1

i

2 (log(σi/σj))
2 (4.43)

=
∑
j ̸=i

−σ2
i − σ2

j

(σ2
i − σ2

j )2
− −σ−2

i log(σi/σj) − σ−2
i

2(log(σi/σj))2
< 0, (4.44)

where the inequality follows from the mentioned procedure applied to each term in the summation
(as in, each term is also strictly negative when u > 0). We also compute the cross terms.

∂2S∞

∂σi∂σj
=

2σiσj

(σ2
i − σ2

j )2
−

σ−1
i σ−1

j

2(log(σi/σj))2
< 0. (4.45)

Now, we check the conditions of Corollary 4.3.4.1 on the Hessian. We’ve already noted that all

elements ∂2S∞
∂σi∂σj

are negative for all 1 ≤ i, j ≤ d. The domination condition is more subtle. We

would like to show that ∑
j ̸=i

∣∣∣∣ ∂2S∞

∂σi∂σj

∣∣∣∣ < ∣∣∣∣∂S∞

∂σ2
i

∣∣∣∣ (4.46)

for all 1 ≤ i ≤ d. Because all cross derivatives and all terms in the summation that make up ∂S∞
∂σ2

i

are negative, we can account for the absolute value bars accordingly. Let ∂S∞
∂σ2

i
=
∑

j ̸=i sij for clarity

(sij < 0 when σi > σj). Namely, the want to show becomes∑
j ̸=i

− ∂S∞

∂σi∂σj
<
∑
j ̸=i

−sij . (4.47)

To show this inequality, it is sufficient to show that − ∂S∞
∂σi∂σj

< −sij for all i, j where σi > σj .

Direct computation finds that

σ2
i + σ2

j

(σ2
i − σ2

j )2
− log(σi/σj) + 1

2σ2
i (log(σi/σj))2

>
σi/σj

2σ2
i (log(σi/σj))2

− 2σiσj

(σ2
i − σ2

j )2
(4.48)

(σi + σj)
2

(σ2
i − σ2

j )2
− log(σi/σj) + 1 + σi/σj

2σ2
i (log(σi/σj))2

> 0 (4.49)

1

(σi − σj)2
− log(σi/σj) + 1 + σi/σj

2σ2
i (log(σi/σj))2

> 0. (4.50)
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which again follows from the aforementioned reparameterization trick. Thus, we conclude that
the domination condition is true, and thus that the Hessian is negative definite and S∞ is strictly
concave

Equipped with these observations, the usual setup is to consider the free energy landscape at
temperature parameter β ∈ (0,∞)

Fβ(X) = E(X) − 1

β
S(X), (4.51)

extending the gradient flow to
Ẋ = −gradgNFβ(X). (4.52)

In some sense, we are using −S(X) as a strictly convex regularizer to E(X) with relative strength
given by the inverse temperature 1

β . Changing from the energy function E(X) to the free energy

Fβ(X) does not change the geometry of overparameterization. In order to numerically simulate
Fβ(X) we use Lemma 4.1.1 to see that

∂S[N,∞]

∂X
= Udiag

(
∇σS[N,∞]

)
V T . (4.53)

We now investigate the convergence behavior of Fβ(X) with respect to special class of energies.

Convergence to Isotropic Matrices. The simplest example of a free energy is if we take

E(X) =
1

2
Tr(XTX) =

1

2

d∑
i=1

σ2
i . (4.54)

In this case, the equilibrium SVD distribution can be computed via differentiation and equating to
0 as a solution to the nonlinear system of equations

σi =
1

β

∑
j ̸=i

σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

. (4.55)

If we simulate the gradient flow, we find that in fact all the singular values converge to the same
value (Figure 4.5a). Therefore, despite the fact that we are minimizing the L2 norm of the singular
values (which pushes the singular values towards 0) and maximizing S(X) (which causes the singular
values to spread out), when combined they “cancel” each other out and result in robust convergence
to a full rank isotropic matrix with one eigenvalue and multiplicity d.

We make these observations rigorous through the following series of results for a more general
form of energy functions Ep(X) = 1

p

∑d
i=1 σ

p
i .

Lemma 4.3.6. We note a few properties about the expression

g(σi, σj) :=
σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

. (4.56)

1. g(σi, σj) is monotonically decreasing in its first argument.
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Figure 4.5: (a) Singular value dynamics with Fβ(X) = 1
2 Tr(XTX) − S∞(X) (i.e. p = 2) and

d = 10 in the infinite depth. We see convergence to an isotropic matrix, verifying Theorem 4.3.7.

The limiting singular value is also exactly as expected: log10

√
d−1
2 ≈ 0.33. (b) d = 2, N = ∞

simulation of diagonal matrix completion with and without explicit regularization via entropy.
When regularization is included, the solutions are generally more tightly distributed at effective
rank 1.
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2. If σi > σj , g(σi, σj) > g(σj , σi).

3. g has a clean limit as σi → σj , namely

lim
σi→σj

g(σi, σj) = lim
σi→σj

σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

=
1

2σj
. (4.57)

Proof. For the first part, notice that
∑

j ̸=i g(σi, σj) = ∂S∞
∂σi

. Thus,

∑
j ̸=i

∂σig(σi, σj) =
∂2S∞

∂σ2
i

. (4.58)

When proving the diagonal elements of the Hessian were negative, we proved each individual term
in the summation was negative, so we conclude that ∂σi

g(σi, σj) < 0. The second argument is
similar - rewrite g(σi, σj) in terms of the ratio r = σi/σj > 1. The expression will be 0 when r = 1
but monotonically decreasing when r > 1.

To prove the limit, begin by letting h = σi − σj . Then, with some algebra we find that

σi

σ2
i − σ2

j

=
h + σj

h(h + 2σj)
=

1

2h

(
1 +

h

σj

)(
1 +

h

2σj

)−1

. (4.59)

For h ≪ 1, we have that the final term is the geometric series(
1 +

h

2σj

)−1

= 1 − h

2σj
+

(
−h

2σj

)2

+ · · · = 1 − h

2σj
+ o(h2). (4.60)

Distributing gives that
σi

σ2
i − σ2

j

=
1

2h

(
1 +

h

2σj
+ o(h2)

)
. (4.61)

Similarly, we can expand the second term.

σ−1
i

log σ2
i − log σ2

j

=
1

2σi log(σi/σj)
(4.62)

=
1

2(h + σj)

(
h
σj

− 1
2

(
h
σj

)2
+ 1

3

(
h
σj

)3
+ . . .

) (4.63)

using that log(1+z) = z−z2/2+z3/3+o(z4). Distributing and using that the sequences absolutely
converge, we can intertwine the terms to collapse to

σ−1
i

log σ2
i − log σ2

j

=
1

2h

((
h

σj
− h2

2σ2
j

+ . . .

)
+

(
1 − h

2σj
+

h2

3σ2
j

+ . . .

))−1

(4.64)

=
1

2h

(
1 +

h

2σj
+ o(h2)

)−1

(4.65)

=
1

2h

(
1 − h

2σj
+ o(h2)

)
(4.66)
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where the final line follows from similar geometric series logic to before. Combining the two terms
now reveals the clean limit.

σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

=

(
1

2h
+

1

4σj
+ o(h)

)
−
(

1

2h
− 1

4σj
+ o(h)

)
(4.67)

=
1

2σj
+ o(h). (4.68)

So as h → 0, the limit is just 1
2σj

. One could also prove this by combining the fractions and applying

L’Hopital’s rule twice.

Theorem 4.3.7 (Isotropic Equlibrium for Entropy Regularized p-Energies). Fix p > 1 and consider
the energy

Ep(X) =
1

p

d∑
i=1

σp
i . (4.69)

The equilibria of Fβ(X) = E(X) − 1
βS∞(X) are the class of matrices{

X such that σ1 = σ2 = · · · = σd =

(
d− 1

β

) 1
p

}
. (4.70)

Proof. Assume for the sake of contradiction that at an equilibrium point there exist i, j such that
σi > σj . Then, we can subtract the two corresponding equilibrium conditions from each other,
giving

σp−1
i − σp−1

j =
1

β

∑
k ̸=i

σi

σ2
i − σ2

k

+
σ−1
i

log σ2
i − log σ2

k

− 1

β

∑
k ̸=j

σj

σ2
j − σ2

k

+
σ−1
j

log σ2
j − log σ2

k

(4.71)

= g(σi, σj) − g(σj , σi) +
∑
k ̸=i,j

g(σi, σk) − g(σj , σk). (4.72)

From Lemma 4.3.6, we see that every single difference on the right side is negative when the singular
values are distinct, but the difference on the left hand side is positive because xp−1 is monotonically
increasing when p > 1. This implies that at an equilibrium, it cannot be the case that σi > σj for
any 1 ≤ i, j ≤ d.

Thus, we see that σ1 = σ2 = . . . = s at equilibrium. The equilibrium relationship reduces to

sp−1 =
1

β

∑
j ̸=i

lim
σi→σj

(
σi

σ2
i − σ2

j

− σ−1
i

log σ2
i − log σ2

j

)
(4.73)

=
1

β

∑
j ̸=i

1

2s
(4.74)

s =

(
d− 1

2β

) 1
p

. (4.75)
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Remark 4.3.8. In fact, this theorem is still true for the wider class of symmetric energies

Ep(X) =

d∑
i=1

f(σi) (4.76)

where f : R → R is convex. The proof is exactly the same contradiction proof, except the left hand
side of the equilibrium condition is nonnegative as justified by the convexity of f . Indeed,

f ′(σi) − f ′(σj) = (σi − σj)f
′′(ξ) (4.77)

for ξ ∈ (σj , σi) by mean value theorem. Since f convex and σi > σj the right hand side is nonnega-
tive. Obviously we are unable to obtain an explicit equilibrium value but the equilibrium points are
thus still exactly

{X|σ1 = σ2 = · · · = σd} . (4.78)

Matrix Completion Regularization. Finally, we find that including the entropy in a matrix
completion energy can indeed act as an explicit regularizer. Figure 4.5b displays the distribution
of final effective ranks with and without including the explicit regularization with strength β = 20.
However, generally the effects are very sensitive to β and initialization parameters, so we mark
these results as mixed. We conjecture that the interaction between an energy that does not have
the same symmetries as the log volume (which is invariant with respect to transformations of the
form X 7→ Q1XQ2 with Q1, Q2 ∈ Od) leads to a messy loss landscape that has peaks and valleys
that are heavily dependent on how strong the regularization is.
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Chapter 5

Conclusion and Discussion

We began with a distilled expository overview of the key results in the DLN focusing on explicit
formulas for flows and invariant manifolds that we later use in numerical simulations, culminating
in the equation for the flow

Ẋ = −
N∑

p=1

(
XXT

)N−p
N dE(X)

(
XTX

) p−1
N . (5.1)

The emergence of a natural Riemannian geometry defined by the positive definite linear operator
AN,X led to new computations of the geodesics. We first studied the two proofs of the geodesics
in the BW geometry subcase: one based on a mechanical Hamiltonian coordinates computation
and another based on Riemannian submersion. We extended the proofs to the DLN case, finding
a general geodesic equation and explicit formulas in a special case given by a rotational symmetry
condition. To obtain the explicit formulas, we also characterized all straight lines that run through
the balanced manifold in the process.

We concluded with a variety of numerical simulations that expand on existing intuition and
understanding of low rank attraction in the training dynamics of matrix factorizations, such as
experimenting with the dependence of the phenomenon on initialization and sparsity of the energy
function. Finally, we construct a regularizer based on the log volume of an orthogonal group. We
can derive explicit characterizations of the equilibrium states of the class of energies

Fβ(X) = Ep(X) − 1

β
S∞(X) (5.2)

When we attempt to use the regularizer for more general energies (matrix completion), we find
mixed results likely because of the delicate interplay of invariances, as S∞(Q1XQ2) = S∞(X) for
Q1, Q2 ∈ Od.
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5.1 Open Problems

Extending to True Deep Learning. The most obvious open problem is extending the theory
to nonlinear neural networks. As a starting point, if the activation function is just the ReLU

ReLU(x) =

{
x x > 0

0 o/w
(5.3)

one can envision a neural network as locally a DLN, where locally is defined in the sense of the
input space, as e.g. for all inputs where all the ReLU’s activate, the function is trivially a DLN.

Another important limitation of the presented theory is that our energy functions and flows
are completely deterministic. In empirical model training, the system incurs numerous sources of
noise from the data. In general, one only has an approximation of the true energy function and
true gradient at each discretization step, usually given as an average over a minibatch of noisy data
samples, thus transforming the flow into a stochastic flow. Yu and Menon [2024] and Menon [2024]
discuss a Riemannian Langevin equation (RLE) extension of the DLN that introduces sources of
stochastic noise, but the idea of incorporating and studying the effects of noise on the gradient flow
is still relatively preliminary. However, there is evidence to believe that noise could have benefits
such as preventing local minima entrapment and further biasing solutions to flat/stable regions of
the loss landscape [Sutskever et al., 2013, Smith et al., 2021], inspiring additional empirical tricks
like Dropout layers [Srivastava et al., 2014].

If we desire even further applicability of our results to modern empirical deep learning, we
also need to extend beyond just naive gradient descent, which is only guaranteed to find a global
minima if the loss is convex. Modern deep learning models are largely trained with momentum-
based optimizers like Adam/AdamW to help escape local minima [Kingma and Ba, 2014, Loshchilov
and Hutter, 2017]. However, our results are limited to just the gradient flow setting.

Geodesics and Convergence Rates. On the more technical side of results, the computation of
explicit geodesics in the general DLN case remains open, as we only compute the general ODEs but
do not solve them. Geodesics are always fundamentally of interest in any Riemannian geometry, but
in algorithms research they can provide further intuition on fundamental limitations of convergence
rates of algorithms that operate in the geometry [Karmarkar, 1990]. Energies that result in gradient
flow paths that remain close to the geodesic path between X0 and the optimizer X∗ are ideal to
speed up convergence.

Low Rank Manifolds. The current work focuses on the full rank downstairs manifold Md.
However, as is clear from our numerical results, for particular energies, the matrix appears to have
limiting behavior that gets asymptotically close to Mr for r < d. It is likely important to also
understand the behavior on Mr more generally (Menon [2024] have parameterizations along lower
rank manifolds).

General Energies. Restricting ourselves to matrix completion energies in the numerical experi-
ments was also an arbitrary choice. We can generalize matrix completion even further to the general
class of quadratic energies given by

E(X) =

M∑
i=1

∥⟨Ai, X⟩ − yi∥22, (5.4)
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where Ai ∈ Rd×d are a series of M measurement matrices and y ∈ RM are the measurement labels.
M is usually ≪ d. Under this setup dE(X) is just

dE(X) =

M∑
i=1

(⟨Ai, X⟩ − yi)Ai. (5.5)

Gunasekar et al. [2017] works in this setup with the BW geometry and is able to derive some
preliminary theoretical results on characterization of optima so it could be fruitful to extend their
characterization to also apply when X = ϕ(W), as numerical simulations seem to imply it is the
case.

We would also like to still more deeply understand the entropy form introduced in Section 4.1.
For example, an interesting theoretical result would be to characterize the limit X∞ for some free
energy Fβ(X) either explicitly or implicitly as the solution to another optimization problem, such
as the minimal nuclear norm solution [Gunasekar et al., 2017]. We also do not fully understand if
there is limiting behavior as d → ∞ in analogy to random matrix theory, which one might expect
because of the appearance of Vandermonde determinants.

5.2 Concluding Thoughts

Understanding training dynamics of deep learning models is crucial as “post-mortem” evaluations
(analyses done on fully trained models) are largely insufficient on their own to formulate a clear
picture. The DLN is just one model of the training dynamics of deep learning models - one that
is limited in scope on its own but simple enough to be amenable to seemingly endless explicit
analysis. As increasing amounts of energy and resources is invested into training large scale AI
models in various domains, understanding how and why the models work also becomes increasingly
important not only for developing better models but also social responsibility. The DLN among
other evidence gives us hope that this problem is not as impossible as previously imagined and the
framework of isolating individual components like overparameterization under the umbrella of deep
learning could be critical in efforts to understand large models.
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